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Abstract
Depth of focus (DOF) is defined as the axial range in which the specimen stage moves without losing focus while the imag-
ing apparatus remains stable. It may not be possible to capture an image that includes the entire specimen in focus due to the 
narrow DOF in microscopic systems. Extended depth of focus (EDOF) is used to overcome this limitation in microscopic 
systems. Although the researchers have developed so many EDOF microscope approaches, this research field still has some 
crucial shortcomings such as high computational costs, complexity and execution time, requiring additional equipment, 
low precise characterization of curves, and edges in images, varying performance depending on the specimen and micro-
scope, using only gray levels of input images to acquire the pixel’s focus values. In order to minimize these shortcomings 
and comprehensively analyze the performance of EDOF approaches, a novel multi-focus image data set is generated, and 
a deep learning-based EDOF microscope approach is proposed in this study. When compared with the state-of-art EDOF 
approaches, our study provides various crucial contributions such as the first EDOF approach based on unsupervised deep 
learning, providing more accurate and specimen-free EDOF, generating a novel multi-focus image data, not requiring 
any pre- or post-processing technique and acquiring the pixel’s focus degrees using deep features. In order to evaluate the 
effectiveness of the suggested approach, 20 different EDOF approaches are applied to a multi-focus image data set contain-
ing 9 image collections (4 synthetic and 5 microscope image collections) in total. Performance analysis metrics with and 
without requiring a reference image are preferred to identify which EDOF microscope approach can extract more essential 
details from the multi-focus images for the synthetic and microscope image collections, which are Root Mean Square Error 
(RMSE), Peak Signal Noise Ratio (PSNR), Universal Quality Index (UQI), Correlation Coefficient (CC), Perception-based 
Image Quality Evaluator (PIQE), Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), Extension of Universal 
Quality Index for N Images (UQIN), and Naturalness Image Quality Evaluator (NIQE). Objective and subjective analysis of 
this study demonstrates that unsupervised deep learning model is more efficient to transmit crucial details from multi-focus 
images. Moreover, the suggested EDOF microscope approach with highest PSNR, UQI, CC, UQIN and lowest RMSE, PIQE, 
BRISQUE, NIQE produces higher performance than the state-of-art approaches.

Keywords Extended depth of focus · Unsupervised deep learning · Focus measurement operator · Auto-encoder · Depth  
of focus · Microscopic system

Introduction

In microscopic systems, depth of focus (DOF) is described 
as the axial range in which the specimen stage moves with-
out loss of focus while the imaging equipment remains sta-
ble. It is impossible to capture an image in which the full 
area of the specimen is focused when its size is wider than 
the microscope DOF. When scanning the specimen in the 
Z-axis, only the areas inside the DOF are clearly visible. 

Figure 1 shows multi-focus images with the same field of 
perspective and different areas in focus. As shown in Fig. 1, 
specimen areas that are not inside the DOF seem blurry. 
While developing applications such as classification, seg-
mentation, registration, and stitching, which are performed 
using image processing and artificial intelligence algorithms 
in microscopic systems, researchers do not prefer the image 
(shown in Fig. 1), which is captured when the specimen size 
is wider than the DOF. In order to increase the effectiveness 
of image processing and artificial intelligence algorithms 
in microscopic systems, the image in which the full area of 
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the specimen is focused is created with an extended depth 
of focus (EDOF) microscope.

In the literature, the approaches developed for EDOF 
microscope are divided into two categories: wavefront cod-
ing and image fusion based [1]. DOF is extended by plac-
ing elements on the back focusing plane of the microscope 
objective in the wavefront coding-based approaches, firstly 
generated by Dowski and Cathey [2]. Advantages: great 
precision and real-time performance. Disadvantages: high 
cost and requiring additional hardware [3–5]. On the other 
hand, image fusion-based approaches create an image in 
which the full area of the specimen is focused by using 
a collection of multi-focus images. According to litera-
ture researches, these approaches are the most frequently 
preferred to produce the image in which the full area of 
the specimen is focused in the microscope systems [6, 7]. 
Advantages: low cost and not requiring additional hard-
ware. Disadvantages: performance variation according to 
the specimen and microscope. These approaches consist of 
three main phases: 

1. Producing a collection of multi-focus images: By adjust-
ing the specimen stage in the Z-axis during this phase, 
images with the same field of perspective and different 
areas in focus are captured.

2. Calculating pixel’s focus values in the collection of 
multi-focus images: In this phase, the values giving 
information about the focusing of every pixel are cal-
culated by focus measurement operators. The research-
ers categorize focus measurement operators into six 
classes [8]:

• Based on Gradient: These operators use the pixel’s 
first derivative to determine the focus value. Gauss-
ian Derivative, Tenengrad, and Gradient Energy are 
some examples of these measurement operators that 
are frequently used in the literature.

• Based on Laplacian: These operators use the pixel’s 
second derivative to extract the focus value. Variance 
of Laplacian, Energy of Laplacian, Multi-Directional 
Modified Laplacian, and Laplacian in 3D can be 
given as examples of these measurement operators.

• Based on Wavelet Transform: These operators utilize 
discrete wavelet transform coefficients to calculate 
the pixel’s focus value. Sum of Wavelet Coefficient, 
3D Wavelet Transform, and Variance of Wavelet 
Coefficient are some examples of these measurement 
operators generally used in the literature.

• Based on Statistics: These operators use the image’s 
quality data such as density and histogram to pro-
duce the pixel’s focus value. Chebyshev Moments, 
Eigen Values, Variance, and Histogram Entropy are 
the popular statistics-based measurement operators.

• Based on Cosine Transform: These operators uti-
lize discrete cosine transform to compute the pixel’s 
focus level. The common measurement operators are 
Discrete Cosine Transform (DCT) Reduced Energy 
Ratio and DCT Energy Ratio.

• Others: These operators use the pixel’s specific fea-
tures to compute the focus degree. Local Binary Pat-
tern, Spatial Frequency, Discrete Curvelet Transform, 
Brenner’s Focus Measure, 2D and 3D Steerable Filters, 
Non-Subsampled Shearlet Transform, Gabor Features, 
Auto-correlation, and Image Curvature can be given as 
some examples of these measurement operators.

3. Selecting pixels with maximum focus value: In this 
phase, a single image is combined by selecting the 
pixels with maximum focus value in the collection of 
multi-focus images. In order to determine the pixels with 
maximum focus value, the researchers utilize fusion 
selection rules. Average and Maximum Selection can 
be given as examples for classical fusion selection rules.

Fig. 1  Multi-focus images with 
the same field of perspective 
and different areas in focus

(a) (b)
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Related Works

As stated previously, there are two categories of approaches 
proposed for EDOF microscope: wavefront coding and 
image fusion based. The examples of the studies proposing 
a wavefront coding-based approach can be given as follows: 
Dowski and Cathey created an optical-digital system offering 
image performance with a broad DOF that is nearly diffrac-
tion-limited [2]. Wavefront coding imaging technology with 
a cubic phase mask was introduced for EDOF microscope 
system [9]. In this system, the standard incoherent optical 
system was changed by a phase mask, and the resulting inter-
mediate image was undergone digital processing. In order to 
create a wavefront-coding EDOF microscope system, Zhao 
et al. developed two major optimization techniques based on 
the commercial optical design software [10]. Gierlak et al. 
utilized a spatial light modulator to design a wavefront cod-
ing-based EDOF microscope [11]. In order to accomplish 
deblurring, a computerized imaging strategy was proposed 
for EDOF microscope [3]. This study implemented wavefront 
coding using diffractive optical element and convolutional 
neural network. Cao et al. suggested adding wavefront coding 
to the microscope system in order to enhance the system’s 
performance while exposed to nonuniform spectrum [12]. 
In order to minimize the restrictions of EDOF microscope, 
a computational imaging-based technique was suggested by 
Elmalem et al. [13]. Du et al. suggested a technique named 
lens-combined wavefront coding to simultaneously increase 
the aperture and DOF [14]. Wei et al. constructed two alterna-
tive wavefront coding systems with the phase plate integrated 
in various optical system surfaces in order to observe the 
imaging properties of the integrated wavefront coding system 
[15]. By using a genetic algorithm, Li et al. proposed a high-
order polynomial phase mask increasing success modulated 
transfer function defocus consistency [16].

Literature studies for image fusion-based approach can 
be exemplified as follows: Valdecasas et al. built a new 
method for computing the EDOF, where three different 
tests and ten alternative methods were utilized for the 
proposed method evaluation and test [17]. An approach 
based on image formation model assessing jointly a speci-
men’s texture and topography from a collection of bright-
field optical sections was proposed by Aguet et al [18]. 
In order to extract the focusing characteristics from the 
image collection produced by the microscopic system, 
Forster et al. devised an approach based on the complex 
value discrete wavelet transform (CDWT) [19]. It has been 
noted in the literature studies, nonetheless, that CDWT has 
some restrictions when it comes to retrieving curve and 
edge information from images. Tessens et al. developed an 
EDOF technique using discrete curvelet transform (DCT) 
to minimize these restrictions [20]. According to Forster 
and Tessen’s findings, the dimensions of the frequency 

coefficients derived by CDWT and DCT differ from the 
dimensions of the multi-focus images. This causes the 
focusing information to not be adequately extracted from 
multi-focus images. Dogan et al. proposed a new approach 
based on non-subsampled shearlet transform (NSST) for 
EDOF in microscopic systems, which has faster and better 
sparse representation than existing multiscale transforms 
(CDWT, DCT) [21]. To generate an EDOF microscope 
image with every bacillus visible in microscope, a multi-
focus image fusion method was proposed in [22]. Using 
synthetic sets of images with ground truth, Piccinini et al. 
devised a novel technique for EDOF microscope [23]. The 
researchers utilize fusion selection rules, as discussed ear-
lier, to identify the pixels with the highest focus value. In 
addition to classical fusion selection rules (Average and 
Maximum Selection), since the focusing characteristics 
are calculated using low and high-frequency coefficients 
in recent studies [24–26] proposing approaches based on 
multiscale transforms, fusion selection rules suitable for 
these approaches have also been developed.

As previously stated, EDOF has many literature studies 
and is one of the most preferred strategies in the micro-
scopic system to produce the image in which the full 
area of the specimen is focused. However, this research 
field still contains some crucial shortcomings. The short-
comings of the literature studies that presented EDOF 
approach can be summarized as follows: 

1. Wavefront coding-based approaches can provide great 
precision and real-time performance, but they have high 
computational costs and complexity and require addi-
tional equipment.

2. The literature includes so many studies which proposed 
various focus measurement operators and image fusion 
techniques [27–29]. Moreover, researchers have carried 
out many algorithms for image fusion, especially in 
other research areas such as medical imaging [30–32] 
and remote sensing [33, 34]. However, there are a lim-
ited number of image fusion-based studies for EDOF 
microscopy despite their lower cost and not requiring 
additional equipment.

3. Compared to conventional approaches (Variance, Tenen-
grad), recent approaches based on CDWT, DCT, and 
NSST offer more precise focus degree for EDOF micro-
scope. Literature studies, however, reveal that these 
approaches are unable to deal with various constraints, 
such as low precise characterization of curves and edges 
in images, and higher execution time.

4. There is no multi-focus image data set that is used to 
comprehensively analyze the performance of EDOF 
approaches.

5. To ease the limitations of traditional EDOF approaches 
(gradient, laplacian, and statistics-based), the research-
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ers typically adopt a pre- or post-processing methodol-
ogy rather than proposing a completely new focus meas-
urement operator.

6. The majority of image fusion-based EDOF approaches 
perform adequately in areas with dense texture, but they 
struggle in areas with loud or weak texture. They are not 
specimen-free, and their performances vary depending 
on the specimen and microscope.

7. The sizes of the feature matrices generated by the multi-
scale transform-based (discrete wavelet transform and 
discrete curvelet transform) EDOF approaches are dif-
ferent from the sizes of the input images (multi-focus 
images). As a result, focus details of input images are 
not fully recovered.

8. Convolutional neural networks (CNN) and deep learning 
have evolved significantly and rapidly in the research 
fields such as image processing, computer vision, inter-
net of things, and medical image analysis in recent 
years [35–39]. However, the literature only contains a 
few numbers of CNN-based EDOF approaches. This, 
according to our literature review, is because there isn’t 
an adequate amount of data set to construct CNN-based 
EDOF approaches.

Main Purpose and Contributions of This Study

In order to overcome the limitations of the literature studies 
presenting EDOF microscope, the purpose of this study is to 
develop more accurate and specimen-free EDOF microscope 
approach which produces an image in which the full area of 
the specimen is focused by using a collection consisting of 
the multi-focus images. The primary contributions of the 
suggested study are as follows: 

1. Our review of the literature indicates that this is the first 
study to propose a deep learning-based EDOF micro-
scope approach.

2. Contrary to literature approaches with various con-
straints such as low precise characterization of curves 
and edges in images, higher execution time and perfor-
mance variation according to specimen and microscope 
(especially recent measurement operators based on 
Wavelet, Curvelet, 2D and 3D Steerable filters, NSST), 
this study provides more accurate and specimen-free 
EDOF microscope approach.

3. In order to provide comprehensive and specimen-free 
performance analysis of EDOF approaches, a novel 
multi-focus image data set is generated in this study, 
which is created using different specimen and magnifi-
cation objective.

4. To produce an image in which the entire area of the 
specimen is focused, the recommended approach does 
not require any pre- or post-processing techniques.

5. The proposed EDOF approach acquires the pixel’s focus 
degrees using deep features, which can produce more 
sharp variation regarding images, in contrast to literature 
studies employing solely the gray levels of the multi-
focus images.

6. Since the sizes of the coefficient representations (lowpass 
and highpass coefficients) are different from the sizes of 
input images (multi-focus images) in the earlier studies 
proposing multi-scale transform (CDWT and DCT) based 
approach, they are resized to provide one to one corre-
spondence between the pixels. This makes it impossible 
to extract critical focus details from the images. This issue 
is resolved in this study by utilizing deep feature matrices 
that are the same size as the input images.

The rest of this study has been designed as follows: The 
“Methodology’’ section includes two subsections, briefly 
introducing novel multi-focus image data set, the structure, 
and an overview of the deep learning model, which forms 
the foundation for the EDOF microscope approach. The 
experimental results and discussion are presented in the 
“Experiments and Discussion’’ section. Finally, the “Con-
clusion’’ section summarizes the conclusion.

Methodology

This study is built on two main objectives: (1) Generating a 
novel multi-focus image data set and (2) proposing a deep 
learning-based EDOF approach. These subsections of study 
can be described as follows:

Multi‑Focus Image Data Set

In order to provide comprehensive and specimen-free per-
formance analysis of EDOF approaches, a novel multi-focus 
image data set including synthetic and real microscope 
image collections is generated in this study.

Synthetic Image Collections

Synthetic image collections are created using defocus simu-
lation model generated by Pertuz et al. [8] (https:// www. 
mathw orks. com/ matla bcent ral/ filee xchan ge/ 55095- defoc us- 
simul ation). This model simulates defocus in order to gener-
ate a multi-focus image collection. It operates by mapping an 
image (texture) to a depth map with a predetermined shape 
and simulating defocus for various focus points. Four dif-
ferent images are operated to simulate multi-focus image 
collections. Examples of multi-focus images from synthetic 
image collections — 1, 2, 3, and 4, details of which are 
outlined in Table 1, are shown in Fig. 2. The Synthetic 
Image Collection — 1 is created by mapping an image with 

https://www.mathworks.com/matlabcentral/fileexchange/55095-defocus-simulation
https://www.mathworks.com/matlabcentral/fileexchange/55095-defocus-simulation
https://www.mathworks.com/matlabcentral/fileexchange/55095-defocus-simulation
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a resolution of 256 × 256 and 3.3 mm focal length. This 
collection involves 20 images, which are acquired from 50 
to 500 mm focus distance and with cos shape, 25 images, 
which are acquired from 100 to 500 mm focus distance 
and with plane shape, 30 images, which are acquired from 
200 to 500 mm focus distance and with sphere shape, 35 
images, which are acquired from 200 to 400 mm focus 
distance and with cone shape, respectively. The Synthetic 
Image Collection — 2 is created by mapping an image with 
240 × 240-pixel size and 3.3 mm focal length. This collec-
tion involves 20 images, which are acquired at focus dis-
tances ranging from 50 to 250 mm and with cos shape, 25 
images, which are acquired at focus distances ranging from 
100 to 300 mm and with plane shape, 30 images, which are 
acquired at focus distances ranging from 200 to 500 mm 
and with sphere shape, 35 images, which are acquired at 
focus distances ranging from 200 to 450 mm and with cone 
shape, respectively. The Synthetic Image Collection — 3 
is created by mapping an image with a resolution of 300 
× 300 and 3.3 mm focal length. This collection involves 
20 images, which are acquired from 200 to 400 mm focus 
distance and with cos shape, 25 images, which are acquired 
from 50 to 300 mm focus distance and with plane shape, 30 
images, which are acquired from 150 to 250 mm focus dis-
tance and with sphere shape, 35 images, which are acquired 
from 50 to 450 mm focus distance and with cone shape, 
respectively. The Synthetic Image Collection — 4 is created 
by mapping an image with 256 × 256 pixel size and 3.3 mm 
focal length. This collection involves 20 images, which are 
acquired at focus distances ranging from 100 to 300 mm 
and with cos shape, 25 images, which are acquired at focus 

distances ranging from 50 to 300 mm and with plane shape, 
30 images, which are acquired at focus distances ranging 
from 30 to 300 mm and with sphere shape, 35 images, which 
are acquired at focus distances ranging from 40 to 400 mm 
and with cone shape, respectively.

Microscope Image Collections

In addition to synthetic image collections, microscope image 
collections are created in this study. In order to create these 
collections, firstly 5 tissue specimens of mouse, which are 
heart, lung, liver, kidney, and intestine, stained with hema-
toxylin-eosin (HE), are prepared, and then multi-focus 
images are acquired scanning microscope stage. Examples 
of multi-focus images from microscope image collections 
— 1, 2, 3, 4, and 5, details of which are outlined in Table 2, 
are shown in Fig. 3. ×10 and ×40 magnification objectives 
are utilized in Zeiss Primo microscope. The multi-focus 
images of all collections are captured using Zeiss Axiocam 
microscope camera. They have different pixel sizes which 
are 1920 × 1080, 1420 × 760, 1450 × 800, 1050 × 600, and 
1300 × 640, and saved in PNG file format. The numbers of 
multi-focus images in microscope image collections are 29, 
35, 21, 36, 31, 22, 33, 40, 18, and 32.

Deep Learning Based Approach for EDOF (DL‑EDOF)

This study presents a more accurate and specimen-free 
EDOF microscope approach based on unsupervised deep 
learning to produce an image in which the full area of the 
specimen is focused. This approach is performed in two 
main stages, training and combining. In the training stage, an 
auto-encoder model is designed to gather high-dimensional 
characteristics of input images (multi-focus images). In the 
combining stage, the pixel’s focus values are calculated 
using deep characteristics, and an image in which the full 
area of the specimen is focused is produced using a collec-
tion of multi-focus images. These stages can be described 
as follows:

Training Stage

In the training stage, an auto-encoder model is constructed 
to acquire high-dimensional characteristics of multi-focus 
images. The structure of the auto-encoder model constructed 
in the training stage is shown in Fig. 4. The constructed auto-
encoder model is trained at this stage, and the model’s trainable 
parameters are fixed. As illustrated in Fig. 4, the auto-encoder 
model contains two primary parts; encoder and decoder. 

1. Encoder: Capturing the global attributes of the pixels is 
the primary priority of this part. The image is taken as the 
input for this part after being scaled down to 256 × 256 and 

Table 1  Details of Synthetic Image Collections — 1, 2, 3, and 4

Collection Number of 
images

Focus distance Shape

Synthetic image 20 50–500 mm Cos
Collection — 1 25 100–500 mm Plane

30 200–500 mm Sphere
35 200–400 mm Cone

Synthetic image 20 50–250 mm Cos
Collection — 2 25 100–300 mm Plane

30 200–500 mm Sphere
35 200–450 mm Cone

Synthetic image 20 200–400 mm Cos
Collection — 3 25 50–300 mm Plane

30 150–250 mm Sphere
35 50–450 mm Cone

Synthetic image 20 100–300 mm Cos
Collection — 4 25 50–300 mm Plane

30 30–300 mm Sphere
35 40–400 mm Cone
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(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2  Examples of multi-focus images from synthetic image collections — 1 (a, b, c, d); 2 (e, f, g, h); 3 (i, j, k, l); 4 (m, n, o, p)
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turned into gray scale. As output, 64 deep feature matrices 
(256 × 256) in total are generated. There are five sections 
which contain convolutional and spatial squeeze and chan-
nel excitation (cSE) blocks, whose outputs are linked to 
another. The convolutional block consists of 1 convolu-
tional (Conv 2D) with 3 × 3 kernel size and 1 stride, 1 Relu, 
and 1 batch normalization layers. Due to claims in the liter-
ature studies that smaller kernel sizes are more efficient for 
retrieving relevant information from the images, the kernel 
sizes of all convolutional layers in all convolutional blocks 
are set to 3 × 3. As shown in Fig. 4, the kernel numbers of 
the convolution blocks are 16, 16, 32, 48, and 64, respec-
tively. The objective of the encoder part is to produce deep 
feature matrices with the same size as the input image, so 
distinct layers like pooling are not used to precisely rebuild 
the image. In addition to convolutional blocks, cSE blocks 
are used in the encoder part to increase the generalizability 
and strength of the deep features. The cSE blocks include 
1 average pooling and 2 dense layers. These blocks encode 
the global spatial data into a vector using a global average 
pooling layer, which passes through two dense layers to 
create a new vector.

2. Decoder: This part recreates the input image (256 × 256) 
using the attributes of the pixels, which are captured in the 
encoder phase. In this part, the deep feature matrices (256 
× 256 × 64) are taken as input, and an image with 256 × 
256 size is produced as output. There are four convolutional 
blocks, which consist of 1 convolutional with 3 × 3 kernel 
size and 1 stride, 1 relu, and 1 batch normalization layers. 
As given in Fig. 4, the kernel numbers of the convolution 
blocks are 64, 48, 32, and 16, respectively.

Combining Stage

The combining stage creates an image in which the full 
area of the specimen is focused using a collection of multi-
focus images. Figure 5 shows the schematic diagram of the 
combining stage. As shown in Fig. 5, this stage consists 
of four fundamental phases: (1) producing a collection 
of multi-focus images, (2) generating deep feature matri-
ces, (3) calculating focus values of pixels, and (4) select-
ing pixels with maximum focus values. These phases are 
explained as follows: 

1. Producing a collection of multi-focus images: In 
the first phase, a collection of multi-focus images 
(I1(m, n), I2(m, n), I3(m, n),… , IK(m, n)) are produced, 
where the image indices are represented by K, the pixel 
coordinates are m and n.

2. Generating deep feature matrices: The second phase uti-
lizes the parameters of the auto-encoder model trained 
in the previous stage (training stage) to obtain a total of 
64 deep feature matrices for each multi-focus image.

3. Calculating focus values of pixels: The EDOF micro-
scope approaches necessitate pixel-to-pixel align-
ment between multi-focus images. Since the previous 
studies use the multi-scale transform (DCWT, DCT), 
where sizes of coefficient representations (lowpass and 
highpass coefficients) are not the same as the source 
images, the representations of multi-focus images are 
resized to supply pixel-to-pixel alignment. This makes 
it impossible to extract significant characteristic details 
from the images. This study uses deep feature matri-
ces with the same sizes as the input images to address 
this issue. In the third phase, the focus measures 
(FM1(m, n),FM2(m, n),FM3(m, n),… ,FMK(m, n)) o f 
multi-focus images are calculated with focus fusion rule. 
The focus fusion rule selects the highest pixel’s focus 
values on the deep feature matrices.

4. Selecting pixels with maximum focus values: In the 
fourth phase, the fusion selection rule, which searches 
the pixels with the maximum focus value, is utilized in 
order to create an image (CI(m, n)) in which the full area 
of the specimen is focused. 

In Eq. (1), CI(m, n) represents the image in which the 
full area of the specimen is focused, m and n are the pixel 
locations of image.

(1)CI(m, n) = argmax(FM(m, n))

Table 2  Details of Microscope Image Collections — 1, 2, 3, 4, and 5

Collection Tissue Image size Objective Number 
of images

Microscope image Heart 1920 × 1080 10× 29
Collection — 1 Heart 1920 × 1080 40× 35
Microscope image Lung 1420 × 760 10× 21
Collection — 2 Lung 1420 × 760 40× 36
Microscope image Liver 1450 × 800 10× 31
Collection — 3 Liver 1450 × 800 40× 22
Microscope image Kidney 1050 × 600 10× 33
Collection — 4 Kidney 1050 × 600 40× 40
Microscope image Intestine 1300 × 640 10× 18
Collection — 5 Intestine 1300 × 640 40× 32



 Journal of Imaging Informatics in Medicine

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 3  Examples of multi-focus images from Microscope Image Collections — 1 (a, b, c, d); 2 (e, f, g, h); 3 (i, j, k, l); 4 (m, n, o, p); 5 (q, r, s, t)
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Experiments and Discussion

Software and Device Settings

The deep learning framework Pytorch is employed to experi-
ment with the proposed EDOF microscope approach. The 
training and combining stages are compiled in the Pytorch 
environment. The programming language is Python 3.9 based 
on the Windows system with Miniconda 3 package manage-
ment software. For implementation of EDOF microscope 
approaches, this study uses a hardware configuration that 
includes a PC with an Intel Core i7-9750 processor operating 
at 2.60 GHz, 32 GB of RAM, and an NVIDIA GeForce RTX 
3060 GPU with 12 GB of GPU VRAM.

Performance Analysis Metrics

The synthetic image collections include a reference image 
used to evaluate the efficiency of EDOF microscope 
approaches. In this study, therefore, performance analysis 
metrics with requiring a reference image are preferred to 
identify which approach can extract more essential details 
from the multi-focus images for the synthetic collections. 
These performance analysis metrics are as follows:

• Root Mean Square Error (RMSE):
  RMSE identifies the similarity between the image cre-

ated with EDOF microscope approach and the reference 
image. The RMSE value of the image generated with the 

ideal approach is expected to be smaller than the other 
approaches. The calculation of RMSE is given by 

 where CI and RI are the images created with the EDOF 
microscope approach and reference image, K and L refer 
to the sizes of the images.

• Peak Signal to Noise Ratio (PSNR):
  PSNR is a measure which represents the relation between 

the image created with EDOF microscope approach and the 
reference image. The PSNR value of the image generated 
with the ideal approach is expected to be higher than the 
other approaches. PSNR measure is calculated by 

 where CI and RI are the image created with EDOF 
microscope approach and reference image, H is the  
highest value in the CI, K, and L refer to the sizes of  
the images.

• Universal Quality Index (UQI):
  UQI is utilized to measure the disturbance between 

the image created with EDOF microscope approach 

(2)RMSE =

√√√√ 1

K ∗ L

K∑
i=1

L∑
j=1

(RIi,j − CIi,j)
2

(3)PSNR = 20 ∗ log10

⎛
⎜⎜⎜⎜⎜⎝

H2

�
1

K∗L

K∑
i=1

L∑
j=1

(RIi,j − CIi,j)
2

⎞⎟⎟⎟⎟⎟⎠

Fig. 4  Structure of auto-encoder 
model constructed in training 
stage
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and the reference image. The fact that the UQI value 
of the image is close to 1 indicates that the approach 
is ideal. UQI measure is computed by 

 where 
−

RI and 
−

CI are the means of the values on the 
reference image and image created with EDOF 
microscope approach, �RI,CI , �RI , and �CI represent the 
covariance and variances of the values on the reference 
image and image created with EDOF microscope 
approach.

• Correlation Coefficient (CC):
  CC gives a value about the relation between the 

image created with EDOF microscope approach and the 
reference image. The CC value of the image generated 
with ideal approach is expected to be higher than the 
other approaches. The computation of CC is given by 

(4)UQI =
4�RI,CI

−

RI
−

CI

(�2
RI
+ �

2
CI
)(

−

RI
2

+
−

CI
2

)
 where CI and RI are the image created with EDOF 
microscope approach and reference image, 

−

RI and 
−

CI 
refer to the means of the values on the reference image 
and image created with EDOF microscope approach.

In addition to synthetic image collections, microscope 
image collections are used to assess the efficiencies of 
EDOF microscope approaches. However, the microscopic 
system does not have an image which can be recognized as 
a reference (ideal), so performance analysis metrics without 
requiring a reference image are preferred to identify which 
approach can extract the more critical focus data from the 
multi-focus images. These performance analysis metrics are 
as follows:

(5)

CC =

∑
i

∑
j

(RIi,j −
−

RI )(CIi,j −
−

CI )

����
�
∑
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Fig. 5  Schematic diagram of combining stage: (1) producing a collection of multi-focus images, (2) generating deep feature matrices, (3) calcu-
lating focus values of pixels, and (4) selecting pixels with maximum focus values



Journal of Imaging Informatics in Medicine 

Table 3  Objective results of performance analysis metrics calculated with different EDOF approaches for Synthetic Image Collections — 1 and 
2

Category Approach RMSE PSNR UQI CC

Synthetic Image 
Collection 
— 1

Gradient Gaussian Derivative 3.7114 29.0398 0.9864 0.9869

Tenengrad 3.6951 28.9906 0.9863 0.9868
Gradient Energy 3.1612 30.5330 0.9905 0.9907

Laplacian Energy of Laplacian 3.1495 32.3775 0.9869 0.9869
Multi-Directional Modified Laplacian 3.2278 31.7333 0.9864 0.9865
Laplacian in 3D 3.2278 31.7333 0.9864 0.9865

Wavelet Transform Sum of Wavelet Coefficient 3.8388 30.8237 0.9816 0.9837
3D Wavelet Coefficient 3.8328 30.9098 0.9816 0.9837
Variance of Wavelet Coefficient 3.8444 30.9199 0.9814 0.9835

Statistics Chebysev Moments 4.2931 28.6330 0.9753 0.9778
Eigen Values 4.2052 29.3913 0.9805 0.9825
Variance 4.2889 29.2487 0.9801 0.9821

Cosine Transform DCT Reduced Energy Ratio 4.5102 28.7504 0.9783 0.9806
DCT Energy Ratio 4.2273 29.3360 0.9802 0.9822

Others Spatial Frequency 4.0595 29.7906 0.9816 0.9836
Discrete Curvelet Transform 4.0472 29.0112 0.9812 0.9850
Brenner 4.2516 29.4540 0.9804 0.9825
2D Steerable Filter 4.4938 28.8649 0.9788 0.9811
Gabor Features 4.2006 29.4866 0.9808 0.9828
Non-Subsampled Shearlet Transform 3.8216 31.0235 0.9843 0.9852

Proposed DL-EDOF 2.9065 34.1112 0.9943 0.9949
Synthetic Image 

Collection 
— 2

Gradient Gaussian Derivative 3.8153 31.0903 0.9820 0.9834

Tenengrad 3.7982 31.1758 0.9824 0.9837
Gradient Energy 3.7380 31.2575 0.9827 0.9840

Laplacian Energy of Laplacian 3.6639 31.6613 0.9836 0.9849
Multi-Directional Modified Laplacian 3.6786 31.6039 0.9835 0.9848
Laplacian in 3D 3.6786 31.6039 0.9835 0.9848

Wavelet Transform Sum of Wavelet Coefficient 3.7494 31.4522 0.9829 0.9843
3D Wavelet Coefficient 3.7317 31.6303 0.9834 0.9847
Variance of Wavelet Coefficient 3.7456 31.5159 0.9831 0.9845

Statistics Chebysev Moments 4.5220 29.6265 0.9733 0.9757
Eigen Values 3.7337 31.4724 0.9834 0.9846
Variance 3.7989 31.2096 0.9825 0.9838

Cosine Transform DCT Reduced Energy Ratio 3.8924 31.0858 0.9822 0.9835
DCT Energy Ratio 3.7393 31.5071 0.9835 0.9847

Others Spatial Frequency 3.7382 31.2581 0.9827 0.9840
Discrete Curvelet Transform 3.7411 31.2103 0.9826 0.9837
Brenner 3.8410 31.1905 0.9823 0.9837
2D Steerable Filter 4.0198 30.8687 0.9811 0.9826
Gabor Features 3.7830 31.1159 0.9822 0.9835
Non-Subsampled Shearlet Transform 3.6620 31.6105 0.9831 0.9840

Proposed DL-EDOF 3.3510 33.1590 0.9937 0.9915
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Table 4  Objective results of performance analysis metrics calculated with different EDOF approaches for Synthetic Image Collections — 3 and 
4

Category Approach RMSE PSNR UQI CC

Synthetic Image 
Collection 
— 3

Gradient Gaussian Derivative 6.5183 26.5348 0.9388 0.9396

Tenengrad 6.5215 26.5310 0.9387 0.9396
Gradient Energy 6.5159 26.5083 0.9386 0.9395

Laplacian Energy of Laplacian 6.5164 26.5276 0.9388 0.9396
Multi-Directional Modified Laplacian 6.5133 26.5408 0.9388 0.9397
Laplacian in 3D 6.5133 26.5408 0.9388 0.9397

Wavelet Transform Sum of Wavelet Coefficient 6.5124 26.5560 0.9390 0.9398
3D Wavelet Coefficient 6.5136 26.5425 0.9389 0.9398
Variance of Wavelet Coefficient 6.5305 26.4679 0.9383 0.9391

Statistics Chebysev Moments 6.5965 26.1711 0.9350 0.9358
Eigen Values 6.4985 26.5706 0.9392 0.9401
Variance 6.4991 26.5698 0.9393 0.9401

Cosine Transform DCT Reduced Energy Ratio 6.6309 25.3599 0.9287 0.9295
DCT Energy Ratio 6.4995 26.5203 0.9364 0.9373

Others Spatial Frequency 6.5158 26.5083 0.9386 0.9395
Discrete Curvelet Transform 6.5163 26.5213 0.9386 0.9394
Brenner 6.5205 26.4919 0.9385 0.9393
2D Steerable Filter 6.5170 26.5416 0.9388 0.9397
Gabor Features 6.5080 26.5632 0.9391 0.9399
Non-Subsampled Shearlet Transform 6.5093 26.5428 0.9390 0.9399

Proposed DL-EDOF 6.3088 26.9204 0.9423 0.9479
Synthetic Image 

Collection 
— 4

Gradient Gaussian Derivative 3.6911 33.4429 0.9901 0.9909

Tenengrad 3.6211 33.3870 0.9901 0.9909
Gradient Energy 3.8514 29.3629 0.9856 0.9866

Laplacian Energy of Laplacian 3.6338 33.4435 0.9901 0.9909
Multi-Directional Modified Laplacian 3.6454 33.4580 0.9900 0.9909
Laplacian in 3D 3.6454 33.4580 0.9900 0.9909

Wavelet Transform Sum of Wavelet Coefficient 4.6806 29.7166 0.9850 0.9875
3D Wavelet Coefficient 4.5997 28.6020 0.9829 0.9859
Variance of Wavelet Coefficient 5.0435 28.2693 0.9815 0.9849

Statistics Chebysev Moments 3.6884 34.1618 0.9709 0.9893
Eigen Values 3.6150 33.2447 0.9900 0.9909
Variance 3.6213 33.3900 0.9901 0.9910

Cosine Transform DCT Reduced Energy Ratio 3.8924 31.0858 0.9822 0.9835
DCT Energy Ratio 3.6218 33.1186 0.9899 0.9908

Others Spatial Frequency 3.8514 29.3630 0.9856 0.9866
Discrete Curvelet Transform 3.7498 32.9983 0.9874 0.9878
Brenner 3.6976 33.1473 0.9898 0.9907
2D Steerable Filter 3.6237 33.4801 0.9901 0.9910
Gabor Features 3.6455 33.2743 0.9899 0.9908
Non-Subsampled Shearlet Transform 3.6650 33.3316 0.9896 0.9882

Proposed DL-EDOF 3.0195 36.1254 0.9940 0.9963
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Table 5  Objective results of performance analysis metrics calculated with different EDOF approaches for Microscope Image Collections — 1 
and 2

Category Approach PIQE BRISQUE UQIN NIQE

Microscope 
Image Collec-
tion — 1

Gradient Gaussian Derivative 43.8854 29.9203 0.0907 7.8787

Tenengrad 43.3822 26.9518 0.0905 7.9228
Gradient Energy 42.3390 25.9733 0.0912 7.9091

Laplacian Energy of Laplacian 40.2429 26.5040 0.0932 7.7973
Multi-Directional Modified Laplacian 40.2376 25.8902 0.0937 7.7025
Laplacian in 3D 40.2376 25.8902 0.0937 7.7025

Wavelet Sum of Wavelet Coefficient 40.6387 26.3381 0.0945 7.9008
3D Wavelet Coefficient 41.4758 26.2626 0.0946 7.8871
Variance of Wavelet Coefficient 41.9975 26.7113 0.0956 7.7521

Statistics Chebysev Moments 48.2492 34.3237 0.0890 9.9355
Eigen Values 46.5549 31.3669 0.0901 8.7034
Variance 46.3383 30.9234 0.0904 8.7136

Cosine Transform DCT Reduced Energy Ratio 48.3699 35.4852 0.0897 8.7615
DCT Energy Ratio 49.1536 36.3570 0.0891 8.6189

Others Spatial Frequency 42.6601 25.9663 0.0912 7.9194
Discrete Curvelet Transform 42.5566 25.4133 0.0910 7.9052
Brenner 42.5188 25.8067 0.0909 7.9088
2D Steerable Filter 43.9716 26.7348 0.0911 7.9941
Gabor Features 42.7622 25.4067 0.0913 8.0596
Non-Subsampled Shearlet Transform 41.9987 25.1112 0.0911 7.9114

Proposed DL-EDOF 38.5842 22.1101 0.1070 6.5082
Microscope 

Image Collec-
tion — 2

Gradient Gaussian Derivative 58.0470 38.0676 0.3172 8.9487

Tenengrad 56.9672 37.5640 0.3170 8.9006
Gradient Energy 56.2258 35.5170 0.3166 8.0451

Laplacian Energy of Laplacian 55.3230 34.2490 0.3252 7.6036
Multi-Directional Modified Laplacian 55.2384 34.5742 0.3258 7.6252
Laplacian in 3D 55.2384 34.5742 0.3258 7.6252

Wavelet Sum of Wavelet Coefficient 55.6836 34.5360 0.3059 7.6594
3D Wavelet Coefficient 57.4970 37.3378 0.3137 7.7251
Variance of Wavelet Coefficient 56.1968 36.9485 0.3157 7.6534

Statistics Chebysev Moments 59.8695 39.2960 0.2984 8.7977
Eigen Values 59.7732 38.6014 0.2976 8.6570
Variance 59.3599 38.4999 0.2971 8.6893

Cosine Transform DCT Reduced Energy Ratio 61.6081 40.6963 0.2975 8.5678
DCT Energy Ratio 61.9042 40.7851 0.2973 8.5868

Others Spatial Frequency 56.2897 35.5393 0.3066 8.0541
Discrete Curvelet Transform 56.1122 36.7983 0.3079 8.7751
Brenner 56.3670 37.2696 0.3074 8.4238
2D Steerable Filter 57.4117 38.0146 0.3079 8.8554
Gabor Features 56.7000 37.2007 0.3073 8.1667
Non-Subsampled Shearlet Transform 56.1212 37.1112 0.3075 8.3315

Proposed DL-EDOF 52.5115 31.1567 0.3512 6.6673
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Table 6  Objective results of performance analysis metrics calculated with different EDOF approaches for Microscope Image Collections — 3, 4, 
and 5

Category Approach PIQE BRISQUE UQIN NIQE

Microscope Image Collection — 3 Gradient Gaussian Derivative 45.3449 36.1457 0.0772 9.1115
Tenengrad 44.2059 34.1975 0.0764 9.1680
Gradient Energy 42.7843 34.7746 0.0772 9.0499

Laplacian Energy of Laplacian 40.6009 31.9745 0.0827 8.4256
Multi-Directional Modified Laplacian 40.1350 31.9507 0.0820 8.5498
Laplacian in 3D 40.1350 31.9507 0.0820 8.5498

Wavelet Sum of Wavelet Coefficient 41.0996 32.0819 0.0820 8.5753
3D Wavelet Coefficient 41.1271 32.6248 0.0824 8.5132
Variance of Wavelet Coefficient 41.9641 32.8583 0.0820 8.6347

Statistics Chebysev Moments 46.1159 41.3721 0.0763 10.1118
Eigen Values 46.5531 41.2237 0.0760 9.0023
Variance 46.9587 41.3305 0.0763 9.0464

Cosine Transform DCT Reduced Energy Ratio 49.1429 42.9862 0.0677 9.0782
DCT Energy Ratio 49.2832 42.2644 0.0665 9.9805

Others Spatial Frequency 42.8804 33.7655 0.0773 9.0544
Discrete Curvelet Transform 43.1184 34.5431 0.0785 9.2116
Brenner 42.5211 33.7996 0.0786 8.9858
2D Steerable Filter 45.3372 36.4729 0.0783 9.0619
Gabor Features 44.3160 35.8072 0.0773 9.1849
Non-Subsampled Shearlet Transform 42.4187 33.6366 0.0783 9.0111

Proposed DL-EDOF 37.1345 28.6539 0.1133 6.8428
Microscope Image Collection — 4 Gradient Gaussian Derivative 39.9068 31.7235 0.3097 9.2503

Tenengrad 39.0832 31.6976 0.3095 9.2712
Gradient Energy 38.9116 31.5637 0.3020 9.1601

Laplacian Energy of Laplacian 39.9188 32.1871 0.3001 9.4173
Multi-Directional Modified Laplacian 40.2810 32.9989 0.3003 9.6972
Laplacian in 3D 40.2810 32.9989 0.3003 9.6972

Wavelet Sum of Wavelet Coefficient 41.2965 33.0949 0.2985 9.7286
3D Wavelet Coefficient 42.2010 33.6782 0.2899 9.8583
Variance of Wavelet Coefficient 42.7061 33.9993 0.2944 9.8661

Statistics Chebysev Moments 43.0160 34.1192 0.2760 11.1352
Eigen Values 42.0858 33.3484 0.2875 10.0985
Variance 41.5063 33.1498 0.2984 10.1159

Cosine Transform DCT Reduced Energy Ratio 43.1085 33.8263 0.2976 10.2559
DCT Energy Ratio 44.0799 33.4533 0.2866 10.7683

Others Spatial Frequency 38.6239 31.5718 0.3111 9.2825
Discrete Curvelet Transform 38.6412 31.4015 0.2090 9.3117
Brenner 39.3790 31.4953 0.3093 9.6092
2D Steerable Filter 39.6625 31.3093 0.3114 9.5960
Gabor Features 39.6504 31.5145 0.3093 9.3440
Non-Subsampled Shearlet Transform 38.6712 31.6174 0.3093 9.4537

Proposed DL-EDOF 36.0928 28.1104 0.3994 8.7598
Microscope Image Collection — 5 Gradient Gaussian Derivative 47.3765 26.8044 0.2930 5.9398

Tenengrad 46.9377 25.0933 0.3028 5.8453
Gradient Energy 46.3928 25.2728 0.3028 5.8459

Laplacian Energy of Laplacian 47.0531 27.5470 0.2830 5.9577
Multi-Directional Modified Laplacian 47.0308 27.5838 0.2832 6.0023
Laplacian in 3D 47.0308 27.5838 0.2832 6.0023

Wavelet Sum of Wavelet Coefficient 47.8079 27.5383 0.2836 5.9060
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• Perception-based Image Quality Evaluator (PIQE):
  PIQE is an analysis metric which provides a value 

about the quality of the image created with EDOF micro-
scope approach [40]. The PIQE value of the image gener-
ated with ideal approach is expected to be lower than the 
other approaches.

• Blind/Referenceless Image Spatial Quality Evaluator 
(BRISQUE):

  BRISQUE gives a measure about the quality score of the 
image created with EDOF microscope approach [41]. The 
BRISQUE value of the image generated with ideal approach 
is expected to be lower than the other approaches.

• Extension of Universal Quality Index for N Images 
(UQIN):

  UQIN is utilized to determine a value about data trans-
ferred from the multi-focus images to image created with 
EDOF microscope approach. The UQIN value of the image 
generated with ideal approach is expected to be higher than 
the other approaches. UQIN measure is computed by 

 where (I1, I2, ..., IN) and CI are the multi-focus images 
and image created with EDOF microscope approach, w 
represents the ROI that is subdivided region of image and 
Y(Ik ∣ w) is variance value of the ROI.

• Naturalness Image Quality Evaluator (NIQE):

(6)

UQIN(I1, I2, ..., IN ,CI)

=
1

∣ T ∣

∑
w�T

N∑
k=1

�Ik
(w)xUQI(Ik,CI ∣ w)

(7)�Ik
=

Y(Ik ∣ w)∑N

k=1
Y(Ik ∣ w)

  NIQE gives a value about quality score of the image 
created with EDOF microscope approach [42]. The 
NIQE value of the image generated with ideal approach 
is expected to be lower than the other approaches.

Experiments on Training Stage

An auto-encoder model, a description of which is provided in 
the “Methodology’’ section, is supplied during the training 
stage to acquire the high-dimensional characteristics of the 
multi-focus images. Because our EDOF microscope approach 
is based on unsupervised deep learning, the auto-encoder model 
is trained with the MS-COCO data set - 2017 [43]. Trainable 
parameters of this model are fixed and applied to combine 
the multi-focus images in the second (combining) stage. The 
numbers of batch size and epochs are selected as 48 and 40, 
respectively. Each epoch employs 5000 and 118,287 images for 
training and validation of this stage. Each image is downscaled 
to 256 × 256 pixels and transformed into gray scale.

Objective and Subjective Analysis on Combining Stage

The focus measurement operator is performed by process-
ing the pixel’s neighborhood in the conventional EDOF 
microscope approaches based on image fusion to calculate 
the focus values. In the second phase (calculating pixel’s 
focus values in the collection of multi-focus images) of these 
approaches, only gray levels of the multi-focus images are 
used. Contrary to literature studies proposing conventional 
EDOF microscope approaches, the proposed approach 
acquires the pixel’s focus values from deep features.

Table 6  (continued)

Category Approach PIQE BRISQUE UQIN NIQE

3D Wavelet Coefficient 49.1856 28.2616 0.2731 6.8295
Variance of Wavelet Coefficient 48.5639 28.5573 0.2737 6.4248

Statistics Chebysev Moments 48.4935 27.8313 0.2926 5.9676
Eigen Values 48.9450 27.2044 0.2922 5.6102
Variance 48.5285 27.0662 0.2925 5.6304

Cosine Transform DCT Reduced Energy Ratio 50.3244 29.2315 0.2625 6.5118
DCT Energy Ratio 50.5508 29.1042 0.2620 6.4781

Others Spatial Frequency 46.4555 25.2250 0.2928 5.8508
Discrete Curvelet Transform 46.4498 25.8781 0.2930 5.8311
Brenner 46.4363 26.0051 0.2935 5.8322
2D Steerable Filter 46.8675 26.4140 0.2935 5.8976
Gabor Features 46.7445 27.2996 0.2930 5.8449
Non-Subsampled Shearlet Transform 46.6863 25.7411 0.2931 5.8417

Proposed DL-EDOF 44.1298 23.9155 0.3287 5.0133
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A total of 20 approaches from 6 categories are applied 
to the image collections, details of which are listed in 
Tables  1 and 2, in order to assess the efficacy of our 
EDOF approach based on deep learning. While perfor-
mance analysis metrics with requiring a reference image 

(RMSE, PSNR, UQI, and CC) are preferred to identify 
which EDOF approach can extract more essential details 
from the multi-focus images for the synthetic collections, 
performance analysis metrics without requiring a reference 
image (PIQE, BRISQE, UQIN, and NIQE) are preferred 

Fig. 6  Reference images (a–g), 
images created on Synthetic 
Image Collections — 1 and 2 
with Tenengrad (b–h), Variance 
of Wavelet Coefficient (c–i), 
DCT Reduced Energy Ratio 
(d–j), Spatial Frequency (e–k), 
and proposed approach (DL - 
EDOF) (f–l)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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for the microscope image collections. Tables 3, 4, 5, and 6 
indicate the quantitative outcomes of performance analy-
sis metrics calculated with different EDOF approaches 
for all image collections. As stated previously, an ideal 
EDOF approach is expected to produce an image with 

higher PSNR, UQI, CC, UQIN and lower RMSE, PIQE, 
BRISQUE, and NIQE. As shown in Tables 3, 4, 5, and 6, 
the performances of the EDOF approaches vary according 
to the data set and magnification of microscope objec-
tive. For example; Energy of Laplacian provides better 

Fig. 7  Reference images (a–g), 
images created on Synthetic 
Image Collections — 3 and 4 
with Tenengrad (b–h), Variance 
of Wavelet Coefficient (c–i), 
DCT Reduced Energy Ratio 
(d–j), Spatial Frequency (e–k), 
and proposed approach (DL - 
EDOF) (f–l)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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performance for synthetic image collections — 1 and 2, 
while Eigen Values and Variance provide better perfor-
mance for Synthetic Image Collection - 3. Moreover, this 
shortcoming of EDOF approaches is valid for microscope 
image collections. The results of performance analysis 
metrics indicate that the recommended approach (DL-
EDOF) performs better than the most popular approaches 
for EDOF microscope in the literature. Contrary to lit-
erature approaches with various constraints such as low 
precise characterization of curves and edges in images and 
performance variation according to the specimen (espe-
cially recent measurement operators based on Wavelet, 
Curvelet, 2D Steerable filter, NSST), this study provides 
more accurate and specimen-free EDOF microscope 
approach. It is noteworthy that the EDOF approaches 
based on DCT and statistics provide the worst perfor-
mance with the highest RMSE, PIQE, BRISQUE, NIQE, 
and the least PSNR, UQI, CC, and UQIN. The gray scales 
of multi-focus images are inappropriate for the EDOF 
approaches, as given in Tables 3, 4, 5, and 6. The proposed 
EDOF approach based on deep learning can provide ade-
quate efficiency to transmit crucial details from images.

The references and images created with Tenengrad, Vari-
ance of Wavelet Coefficient, DCT Reduced Energy Ratio, 
Energy of Laplacian, Spatial Frequency, and proposed 
approach (DL - EDOF) on the synthetic and microscope 
image collections are shown in Figs. 6, 7, 8, and 9. By com-
paring reference images in Figs. 6a, g and 7a, g and the 
images generated with different EDOF approaches, it is 
noteworthy that our recommended approach has a greater 
performance. As shown in blue rectangles, patterns and 
blurriness that are not present in the input images (multi-
focus images) are seen in the output images created with 
Tenengrad, Variance of Wavelet Coefficient, DCT Reduced 
Energy Ratio, Energy of Laplacian, Spatial Frequency. As 
illustrated in Figs. 6, 7, 8, and 9, the images created with 
proposed EDOF approach based on unsupervised deep 
learning have lowest levels of the blurring and noise and 
are the most similar to the reference images. The objective 
results, which demonstrate that unsupervised deep learning 
provides the optimum efficiency for all image collections in 
terms of RMSE, PSNR, UQI, CC, PIQE, BRISQUE, UQIN, 
and NIQE, are compatible with the subjective visuals in 
Figs. 6, 7, 8, and 9.

Fig. 8  Images created on Micro-
scope Image Collections — 1 
and 2 with Tenengrad (a–g), 
variance of wavelet coefficient 
(b–h), DCT Reduced Energy 
Ratio (c–i), Energy of Laplacian 
(d–j), Spatial Frequency (e–k), 
and proposed approach (DL - 
EDOF) (f–l) (a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 9  Images created on microscope image collections — 3, 4, and 5 with Tenengrad (a–g–m), Variance of Wavelet Coefficient (b–h–n), DCT 
Reduced Energy Ratio (c–i–o), Energy of Laplacian (d–j–p), Spatial Frequency (e–k–q), and proposed approach (DL - EDOF) (f–l–r)
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Conclusion

Overall Findings

In order to produce an image in which the full area of the 
specimen is focused, this study generates a novel multi-focus 
image data set and improves more accurate and specimen-
free EDOF microscope approach. Our multi-focus image data 
set includes synthetic and real microscope image collections. 
While synthetic image collections are created using defocus 
simulation model, the tissue specimens of mouse, which are 
heart, lung, liver, kidney, and intestine, stained with HE are 
prepared for acquiring microscope image collections. Multi-
focus image data set contains 9 image collections (4 synthetic 
and 5 microscope image collections) in total. The suggested 
EDOF microscope approach is divided into two stages: train-
ing and combining. In the training stage, we construct an auto-
encoder model to acquire high-dimensional attributes of input 
images (multi-focus images). The combining stage produces 
an image in which the full area of the specimen is focused 
using a collection of multi-focus images.

Instead of proposing novel EDOF microscope approach in 
the literature, a pre- or post-processing algorithm is generally 
improved to combine image with higher accuracy and lower 
blurring. In this study, a novel EDOF approach based on unsu-
pervised deep learning is proposed. In contrast to studies in 
the literature, our suggested approach offers better focus rep-
resentation and higher performance. It has minimal computa-
tional costs and complexity because no pre- or post-processing 
algorithm is needed. Moreover, the suggested EDOF approach 
acquires the pixel’s focus values from deep features, in contrast 
to previous studies employing only original images, which can 
provide more sharp variation regarding images.

Our proposed EDOF approach is evaluated theoretically 
and practically using a data set comprising of synthetic and 
real microscope image collections. To investigate which 
EDOF microscope approach can extract more vital charac-
teristics of multi-focus images for synthetic image collections, 
performance analysis metrics with requiring a reference are 
used, which are RMSE, PSNR, UQI, and CC. Image created 
with a higher performance EDOF approach is expected to 
have lower RMSE and higher PSNR, UQI, and CC values. 
The results of these performance analysis metrics for the 
synthetic image collections show that our suggested EDOF 
approach is more effective than the other approaches because 
it has the highest values of PSNR, UQI, and CC and the lowest 
values of RMSE. Also, the visual findings indicate that the 
images produced using the proposed approach’s unsupervised 
deep learning model have the least degree of blurring and 
noise, and are the most similar to the reference images. On the 
other hand, in order to investigate which EDOF microscope 
approach can extract more vital characteristics of multi-focus 

images for microscope image collections, performance anal-
ysis metrics without requiring a reference are used, which 
are PIQE, BRISQUE, UQIN, and NIQE. Image created with 
a higher performance EDOF approach is expected to have 
lower PIQE, BRISQUE, NIQE, and higher UQIN values. It is 
evident that our suggested approach, which has lower PIQE, 
BRISQUE, NIQE values, and higher UQIN values, performs 
better than other literature operators.

Current Constraints

As mentioned in the “Main Purpose and Contributions of This 
Study’’ section, our study has many contributions for EDOF 
microscope, but there are some constraints in the developed 
approach. These constraints can be summarized as follows: 

1. For implementation of EDOF microscope approaches, 
this study uses a hardware configuration that includes 
a PC with an Intel Core i7-9750 processor operating at 
2.60 GHz, 32 GB of RAM, and an NVIDIA GeForce 
RTX 3060 GPU with 12 GB of GPU VRAM. In com-
parison to prior studies using deep learning and CNN-
based techniques in image processing, computer vision, 
and medical imaging analysis, our GPU has significantly 
less memory. To minimize this hardware configuration 
constraint, we optimize GPU consumption by reducing 
the input image dimension to 256 × 256.

2. As previously stated, this is the first study to offer an 
EDOF microscope approach for acquiring pixel focus 
degrees utilizing deep features. In contrast to previous 
studies improving deep learning and CNN-based image 
processing techniques, we created a basic auto-encoder 
model for obtaining high-dimensional attributes from 
multi-focus images (EDOF microscope). This model is 
solely composed of convolutional and cSE blocks.

Future Works

As mentioned in the “Experiments and Discussion’’ section, 
the success of the proposed EDOF microscope approach has 
been proven both numerically and visually. However, some 
future works are planned to further increase EDOF micro-
scope capacity. These works can be summarized as follows: 

1. As mentioned in previous sections, the memory of our 
GPU is quite lower than other studies developing deep 
learning and CNN-based techniques in image process-
ing, computer vision, and medical imaging analysis. 
We think that more satisfactory performance can be 
achieved with high-capacity hardware.

2. An auto-encoder model is created in the training stage 
to acquire high-dimensional attributes of multi-focus 
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images. This auto-encoder model consists of only con-
volutional and cSE blocks. We hope that utilizing addi-
tional sophisticated models, such as vision transformer 
[44] and Swin Transformer [45], which are more effec-
tive than cSE, will improve the deep features’ strength 
and generalizability.

3. To assess the efficacy of the proposed EDOF micro-
scope approach, a data set of synthetic and real micro-
scope image collections is produced. We anticipate that 
extending the data set will yield more objective results.

Author Contributions All authors contributed to the study conception 
and design. Specimen preparation, data collection, and analysis were 
performed by Hulya Dogan, Ilyas Ay, and Sena F. Sezen. Synthetic data 
set preparation was performed by Hulya Dogan and Ramazan Ozgur 
Dogan. Conceptualization, methodology, software, and validation of 
the proposed EDOF approach were performed by Hulya Dogan and 
Ramazan Ozgur Dogan. The first draft of the manuscript was written 
by Hulya Dogan, and writing—review and editing were performed by 
all authors. All authors read and approved the final manuscript.

Funding We thank Karadeniz Technical University Drug and Pharma-
ceutical Technology Application & Research Center for their support. 
Part of this study was supported by a grant from the Scientific Research 
Project Coordination Unit of Karadeniz Technical University, Turkiye 
(Project no. TSA-2019-8561) and the Republic of Turkiye Ministry of 
Agriculture and Forestry General Directorate of Agricultural Research 
and Policies (Project no. TAGEM-19/AR-GE/07).

Data Availability The multi-focus image data set generated to provide 
comprehensive and specimen-free performance analysis of EDOF 
approaches during the current study are not publicly available.

Code Availability The code implementation for the EDOF approach can 
be obtained by contacting the first author of this paper.

Declarations 

Ethics Approval The experimental protocols used in this paper were 
ethically approved by the Institutional Animal Ethical Committee 
(2019/45). All animal studies were performed according to the Guide 
for the Care and Use of Laboratory Animals.

Consent to Participate This study did not use human subjects.

Consent for Publication This study did not use individual person’s data.

Competing Interests The authors declare no competing interests.

References

 1. Ambikumar, A.S., Bailey, D.G., Gupta, G.S.: Extending the depth 
of field in microscopy: A review. In: 2016 International Confer-
ence on Image and Vision Computing New Zealand (IVCNZ), pp. 
1–6 (2016). IEEE

 2. Dowski, E.R., Cathey, W.T.: Extended depth of field through 
wave-front coding. Applied optics 34(11), 1859–1866 (1995)

 3. Akpinar, U., Sahin, E., Meem, M., Menon, R., Gotchev, A.: Learn-
ing wavefront coding for extended depth of field imaging. IEEE 
transactions on image processing 30, 3307–3320 (2021)

 4. Mo, X., Zhang, T., Wang, B., Huang, X., Kuang, C., Liu, X.: 
Alleviating image artifacts in wavefront coding extended depth 
of field imaging system. Optics Communications 436, 232–238 
(2019)

 5. Cohen, N., Yang, S., Andalman, A., Broxton, M., Grosenick, L., 
Deisseroth, K., Horowitz, M., Levoy, M.: Enhancing the per-
formance of the light field microscope using wavefront coding. 
Optics express 22(20), 24817–24839 (2014)

 6. Hermessi, H., Mourali, O., Zagrouba, E.: Multimodal medical 
image fusion review: Theoretical background and recent advances. 
Signal Processing 183, 108036 (2021)

 7. Huang, B., Yang, F., Yin, M., Mo, X., Zhong, C.: A review of 
multimodal medical image fusion techniques. Computational and 
mathematical methods in medicine 2020 (2020)

 8. Pertuz, S., Puig, D., Garcia, M.A.: Analysis of focus measure 
operators for shape-from-focus. Pattern Recognition 46(5), 1415–
1432 (2013)

 9. Pan, C., Chen, J., Zhang, R., Zhuang, S.: Extension ratio of depth 
of field by wavefront coding method. Optics express 16(17), 
13364–13371 (2008)

 10. Zhao, T., Mauger, T., Li, G.: Optimization of wavefront-coded 
infinity-corrected microscope systems with extended depth of 
field. Biomedical optics express 4(8), 1464–1471 (2013)

 11. Gierlak, M., Albrecht, S., Kauer, J., Leverenz, E., Beckers, I.E.: 
Wavefront coding using a spatial light modulator for extended 
depth of field microscopy. In: European Conference on Biomedi-
cal Optics, p. 879803 (2013). Optica Publishing Group

 12. Cao, Z., Zhai, C., Li, J., Xian, F., Pei, S.: Combination of color 
coding and wavefront coding for extended depth of field. Optics 
Communications 392, 252–257 (2017)

 13. Elmalem, S., Giryes, R., Marom, E.: Learned phase coded aper-
ture for the benefit of depth of field extension. Optics express 
26(12), 15316–15331 (2018)

 14. Du, H., Dong, L., Liu, M., Zhao, Y., Wu, Y., Li, X., Jia, W., Liu, 
X., Hui, M., Kong, L.: Increasing aperture and depth of field 
simultaneously with wavefront coding technology. Applied Optics 
58(17), 4746–4752 (2019)

 15. Wei, X., Han, J., Xie, S., Yang, B., Wan, X., Zhang, W.: Experi-
mental analysis of a wavefront coding system with a phase plate 
in different surfaces. Applied Optics 58(33), 9195–9200 (2019)

 16. Li, Y., Wang, J., Zhang, X., Hu, K., Ye, L., Gao, M., Cao, Y., Xu, 
M.: Extended depth-of-field infrared imaging with deeply learned 
wavefront coding. Optics Express 30(22), 40018–40031 (2022)

 17. Valdecasas, A.G., Marshall, D., Becerra, J.M., Terrero, J.: On the 
extended depth of focus algorithms for bright field microscopy. 
Micron 32(6), 559–569 (2001)

 18. Aguet, F., Van De Ville, D., Unser, M.: Model-based 2.5-d decon-
volution for extended depth of field in brightfield microscopy. 
IEEE Transactions on Image Processing 17(7), 1144–1153 (2008)

 19. Forster, B., Van De Ville, D., Berent, J., Sage, D., Unser, M.: 
Complex wavelets for extended depth-of-field: A new method 
for the fusion of multichannel microscopy images. Microscopy 
research and technique 65(1-2), 33–42 (2004)

 20. Tessens, L., Ledda, A., Pizurica, A., Philips, W.: Extending the 
depth of field in microscopy through curvelet-based frequency-
adaptive image fusion. In: 2007 IEEE International Conference 
on Acoustics, Speech and Signal Processing-ICASSP’07, vol. 1, 
p. 861 (2007). IEEE

 21. Dogan, H., Baykal, E., Ekinci, M., Ercin, M.E., Ersoz, S.: A novel 
extended depth of field process based on nonsubsampled shearlet 
transform by estimating optimal range in microscopic systems. 
Optics Communications 429, 88–99 (2018)



 Journal of Imaging Informatics in Medicine

 22. Costa, M.G.F., Pinto, K., Fujimoto, L.B., Ogusku, M.M., 
Costa Filho, C.F.: Multi-focus image fusion for bacilli images in 
conventional sputum smear microscopy for tuberculosis. Biomedi-
cal Signal Processing and Control 49, 289–297 (2019)

 23. Piccinini, F., Tesei, A., Zoli, W., Bevilacqua, A.: Extended depth 
of focus in optical microscopy: Assessment of existing methods 
and a new proposal. Microscopy research and technique 75(11), 
1582–1592 (2012)

 24. Chen, J., Li, X., Luo, L., Mei, X., Ma, J.: Infrared and visible 
image fusion based on target-enhanced multiscale transform 
decomposition. Information Sciences 508, 64–78 (2020)

 25. Li, L., Si, Y., Wang, L., Jia, Z., Ma, H.: A novel approach for 
multi-focus image fusion based on sf-papcnn and isml in nsst 
domain. Multimedia Tools and Applications 79, 24303–24328 
(2020)

 26. Ramlal, S.D., Sachdeva, J., Ahuja, C.K., Khandelwal, N.: An 
improved multimodal medical image fusion scheme based on 
hybrid combination of nonsubsampled contourlet transform and 
stationary wavelet transform. International Journal of Imaging 
Systems and Technology 29(2), 146–160 (2019)

 27. Tan, W., Tiwari, P., Pandey, H.M., Moreira, C., Jaiswal, A.K.: 
Multimodal medical image fusion algorithm in the era of big data. 
Neural Computing and Applications, 1–21 (2020)

 28. Hermessi, H., Mourali, O., Zagrouba, E.: Multimodal medical 
image fusion review: Theoretical background and recent advances. 
Signal Processing 183, 108036 (2021)

 29. Liu, Y., Wang, L., Cheng, J., Li, C., Chen, X.: Multi-focus image 
fusion: A survey of the state of the art. Information Fusion 64, 
71–91 (2020)

 30. Wang, K., Zheng, M., Wei, H., Qi, G., Li, Y.: Multi-modality 
medical image fusion using convolutional neural network and 
contrast pyramid. Sensors 20(8), 2169 (2020)

 31. Jose, J., Gautam, N., Tiwari, M., Tiwari, T., Suresh, A., Sundararaj, 
V., Rejeesh, M.: An image quality enhancement scheme employ-
ing adolescent identity search algorithm in the nsst domain for mul-
timodal medical image fusion. Biomedical Signal Processing and 
Control 66, 102480 (2021)

 32. Liu, S., Wang, M., Yin, L., Sun, X., Zhang, Y.-D., Zhao, J.: Two-
scale multimodal medical image fusion based on structure preser-
vation. Frontiers in Computational Neuroscience 15, 133 (2022)

 33. Ye, F., Li, X., Zhang, X.: Fusioncnn: a remote sensing image 
fusion algorithm based on deep convolutional neural networks. 
Multimedia Tools and Applications 78, 14683–14703 (2019)

 34. Huang, M., Liu, S., Li, Z., Feng, S., Wu, D., Wu, Y., Shu, F.: 
Remote sensing image fusion algorithm based on two-stream 
fusion network and residual channel attention mechanism. Wire-
less Communications and Mobile Computing 2022, 1–14 (2022)

 35. Wang, W., Han, C., Zhou, T., Liu, D.: Visual recognition with 
deep nearest centroids. arXiv preprint arXiv: 2209. 07383 (2022)

 36. Salahuddin, Z., Woodruff, H.C., Chatterjee, A., Lambin, P.: Trans-
parency of deep neural networks for medical image analysis: A 
review of interpretability methods. Computers in biology and 
medicine 140, 105111 (2022)

 37. Fan, F.-L., Xiong, J., Li, M., Wang, G.: On interpretability of arti-
ficial neural networks: A survey. IEEE Transactions on Radiation 
and Plasma Medical Sciences 5(6), 741–760 (2021)

 38. Dong, S., Gao, Z., Pirbhulal, S., Bian, G.-B., Zhang, H., Wu, W., 
Li, S.: Iot-based 3d convolution for video salient object detection. 
Neural computing and applications 32, 735–746 (2020)

 39. Shang, R., Chen, C., Wang, G., Jiao, L., Okoth, M.A., Stolkin, R.: 
A thumbnail-based hierarchical fuzzy clustering algorithm for sar 
image segmentation. Signal Processing 171, 107518 (2020)

 40. Venkatanath, N., Praneeth, D., Bh, M.C., Channappayya, S.S., 
Medasani, S.S.: Blind image quality evaluation using perception 
based features. In: 2015 Twenty First National Conference on 
Communications (NCC), pp. 1–6 (2015). IEEE

 41. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image qual-
ity assessment in the spatial domain. IEEE Transactions on image 
processing 21(12), 4695–4708 (2012)

 42. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely 
blind image quality analyzer. IEEE Signal processing letters 20(3), 
209–212 (2012)

 43. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, 
D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects 
in context. In: European Conference on Computer Vision, pp. 
740–755 (2014). Springer

 44. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, 
X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, 
S., et al.: An image is worth 16x16 words: Transformers for image 
recognition at scale. arXiv preprint arXiv: 2010. 11929 (2020)

 45. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., 
Guo, B.: Swin transformer: Hierarchical vision transformer using 
shifted windows. In: Proceedings of the IEEE/CVF International 
Conference on Computer Vision, pp. 10012–10022 (2021)

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

http://arxiv.org/abs/2209.07383
http://arxiv.org/abs/2010.11929


Journal of Imaging Informatics in Medicine 

Authors and Affiliations

Hulya Dogan1,3 · Ramazan Ozgur Dogan2 · Ilyas Ay3 · Sena F. Sezen3,4

 * Hulya Dogan 
 hulya@ktu.edu.tr

 Ramazan Ozgur Dogan 
 ramazan.dogan@gumushane.edu.tr

 Ilyas Ay 
 ilyas.ay@ktu.edu.tr

 Sena F. Sezen 
 senasezen@ktu.edu.tr

1 Department of Software Engineering, Faculty 
of Engineering, Karadeniz Technical University, 
Trabzon 61080, Türkiye

2 Department of Software Engineering, Faculty of Engineering 
and Natural Sciences, Gumushane University, 
Gumushane 29100, Türkiye

3 Drug and Pharmaceutical Technology Application 
& Research Center, Karadeniz Technical University, 
Trabzon 61080, Türkiye

4 Department of Pharmacology, Faculty of Pharmacy, 
Karadeniz Technical University, Trabzon 61080, Türkiye


	DL-EDOF: Novel Multi-Focus Image Data Set and Deep Learning-Based Approach for More Accurate and Specimen-Free Extended Depth of Focus
	Abstract
	Introduction
	Related Works
	Main Purpose and Contributions of This Study

	Methodology
	Multi-Focus Image Data Set
	Synthetic Image Collections
	Microscope Image Collections

	Deep Learning Based Approach for EDOF (DL-EDOF)
	Training Stage
	Combining Stage


	Experiments and Discussion
	Software and Device Settings
	Performance Analysis Metrics
	Experiments on Training Stage
	Objective and Subjective Analysis on Combining Stage

	Conclusion
	Overall Findings
	Current Constraints
	Future Works

	References


