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a b s t r a c t

Stochastic seismic finite element analysis of a cable-stayed bridge whose material properties are de-
scribed by random fields is presented in this paper. The stochastic perturbation technique andMonte Carlo
simulation (MCS) method are used in the analyses. A summary of MCS and perturbation based stochastic
finite element dynamic analysis formulation of structural system is given. The Jindo Bridge, constructed in
South Korea, is chosen as a numerical example. The Kocaeli earthquake in 1999 is considered as a ground
motion. During the stochastic analysis, displacements and internal forces of the considered bridge are
obtained from perturbation based stochastic finite element method (SFEM) and MCS method by chang-
ing elastic modulus and mass density as random variable. The efficiency and accuracy of the proposed
SFEM algorithm are evaluated by comparison with results of MCS method. The results imply that pertur-
bation based SFEMmethod gives close results to MCS method and it can be used instead of MCS method,
especially, if computational cost is taken into consideration.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Bridgeswith very long spans have always been a great challenge
for engineers throughout history. Cable-stayed types of bridges
are becoming more and more popular in the construction of long
span bridges due to their many advantages, i.e. light in weight,
efficient in load resistance, and of smaller cross sections. Cable-
stayed bridgeswhich consist ofmain girders, towers and cables are
complicated structures. From these towers, cables stretch downdi-
agonally and support the girder. Cable-stayed bridge can be distin-
guished by the number of spans, number of towers, girder type,
number of cables and types of cables. The cable-stayed bridge can
be constructed for even longer spans, if the deck and cable stiffness
and strength to weight ratios can be improved. This could signifi-
cantly diminish the critical compressive stresses of the deck in the
tower zones, and increase the apparent stiffness of the stay-cables,
as their sag action is reduced due to a huge drop of the weight per
unit length.
The traditional structural analyses are realized according to

the assumption that geometrical and material characteristics of
structures are deterministic. However, there are some uncertain-
ties about design values. These uncertainties can be defined as
geometrical characteristics (cross-internal area, flexural inertia,
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length etc.), material characteristics (elastic modulus, Poisson’ ra-
tio, mass density etc.), and magnitudes and distributions of the
loads. The deterministic method could be disqualified for many
structural system analyses because of these uncertainties. MCS is
the most employed method among the stochastic analysis meth-
ods for structural problems. It lies on the generation of a defined
number of samples of the uncertain parameters and on the solu-
tion of the corresponding deterministic problems. However, as the
number of degrees of freedom of the structure and the number of
uncertain parameters increase, structural analyses with theMonte
Carlo become very heavy from a computational point of view, and,
in some cases, the computational effort makes them inapplica-
ble. Accordingly, some non-statistical alternative procedures have
been proposed in the literature [1–5]. On the other hand, stochas-
tic finite element method (SFEM), which is one of the probabilis-
tic analysis methods, increases its reliability day by day. Most of
them are based on perturbation techniques, so that the SFEM is of-
ten identified as the classical finite elementmethod (FEM) coupled
with a perturbation approach. This method is applied several field
in civil engineering, especially, simple or semi-complex structure
systems.
Although there is an extensive literature on deterministic

analysis of bridges [6–9], technical literature is not adequate on the
stochastic dynamic analysis of cable-stayed bridge. The dynamic
behaviors of cable-stayed bridges have been studied by several
researchers [10,11]. Linear and nonlinear static and earthquake-
response analyses of cable-stayed bridges were carried out by
many researchers [12–15] only in the past two decades.

0266-8920/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
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The SFEM algorithm for structures has been developed by sev-
eral researchers [16–20]. However, most of their work is limited to
simple structures. More complex structures such as cable-stayed
bridges are not considered. Very few researchers [21–23] studied
the stochastic finite element method with random variable mate-
rial and geometrical properties of cable-stayed bridges. Cheng and
Xiao [22] proposed a stochastic finite-element-based algorithm for
the probabilistic free vibration and flutter analysis of suspension
bridges through combination of the advantages of the response
surface method, FEM and MCS. Liu et al. [23] investigated large
flexible structures, such as suspension bridges, actually possess
stochastic material properties and these random properties un-
avoidably affect the dynamic system parameters. It is concluded
from numerical analysis of a modern suspension bridge that al-
though the second-order statistics of frequencies are small rela-
tively to the change of basic design variables, such as density of
mass and modulus of elasticity, the sensitivities of modal parame-
ters to these variables at different locations change in magnitude.
The focus of the present paper is to perform the stochastic dy-

namic analysis of a cable-stayed bridge by using the perturbation
based SFEM and MCS methods. During stochastic analysis, dis-
placements and internal forces of the systems are obtained from
perturbation based SFEM and MCS methods by using different un-
certainties of material characteristics. Elastic modulus and mass
density are chosen as random variable material properties. The
analysis results obtained from these two methods are compared
with each other.

2. Stochastic finite element method (SFEM)

In the stochastic finite element method (SFEM), the determin-
istic finite element formulation is modified using the perturba-
tion technique or the partial derivative method to incorporate
uncertainties in the structure systems. Since the basic variables are
stochastic, every quantity computed during the deterministic anal-
ysis, being a function of the basic variables, is also stochastic. There-
fore, the efficientway to arrive at the stochastic responsemay be to
keep account of the stochastic variation of the quantities at every
step of the deterministic analysis in terms of the stochastic varia-
tion of the basic variables.
A SFEM,which is based onperturbation technique, is developed.

The method developed here uses an alternate approach for
obtaining improved computational efficiency. The derivatives of
the concentrationwith respect to randomparameters are obtained
by using the derivatives of localmatrices instead of globalmatrices.
This approach increases the computational efficiency of the
present method by several orders with respect to standard SFEM.
There are two fundamental ways to solve the stochastic problem
(i) analytical approach and (ii) numerical approach. Among
analytical approaches, the perturbation method is widely used
because of its simplicity. Numerical method such as Monte Carlo
Simulation is generally applicable to all types’ stochastic problems
and is often used to verify the results obtained from analytical
methods. A detailed discussion of these methods is presented
below.

2.1. Perturbation based SFEM formulation

The perturbation method is the most widely used technique
for analyzing uncertain system. This method consists of expanding
all the random variables of an uncertain system around their
respective mean values via Taylor series and deriving analytical
expression for the variation of desired response quantities such as
natural frequencies and mode shapes of a structure due to small
variation of those random variables. The basic idea behind the
perturbation method is to express the stiffness and mass matrices
and the responses in terms of Taylor series expansion with respect
to the parameters centered at the mean values.

Since the deterministic equations are valid for theMCS analysis
as well, then the essential differences are observed in case of per-
turbation based stochastic finite element analysis. Let us consider
a deterministic equation of motion in the form of
Mq̈+ Cq̇+ Kq = Qα (1)
where K ,M, C denote the stiffnessmatrix, massmatrix and damp-
ing matrix, q̈, q̇, q denote the acceleration, velocity, displacement,
respectively. The stochastic perturbation based approach consists
usually of up to the second-order equations obtained starting from
the deterministic ones.
The basic idea of the mean based, second-order, second-

moment analysis in stochastic finite elementmoment is to expand,
via Taylor series, all the vector andmatrix stochastic field variables
typical of deterministic finite elementmethod about themean val-
ues of randomvariables (b), to retain only up to second-order terms
and to use in the analyses only the first two statistical moments.
In this way equations for the expectations and covariances of the
nodal displacements can be obtained in terms of the nodal dis-
placement derivatives with respect to the random variables.
The perturbation stochastic finite element equations describing

dynamic response of random variable system for zeroth, first and
second order:
Zeroth-order equation (ε0 terms, one system of N linear si-

multaneous ordinary differential equations for qα(b; τ), α = 1,
2, . . . ,N)
M(b)q̈(b; τ)+ C(b)q̇(b; τ)+ K(b)q(b; τ) = Qα(b; τ). (2)
First-order equations, rewritten separately for all random vari-

ables of the problem (ε1 terms, N̄ systems ofN linear simultaneous
ordinary differential equations for q,ρα (b; τ), ρ = 1, 2, . . . , N̄, α =
1, 2, . . . ,N)
M(b)q̈,ρ(b; τ)+ C(b)q̇,ρ(b; τ)+ K(b)q,ρ(b; τ) = Q ,ρα (b; τ)

−
[
M ,ρ(b)q̈0(b; τ)+ C ,ρ(b)q̇0(b; τ)+ K ,ρ(b)q0(b; τ)

]
. (3)

Second-order (ε2 terms, one system of N linear simultaneous
ordinary differential equations for q2α(b; τ), α = 1, 2, . . . ,N)

M(b)q̈(2)(b; τ)+ C(b)q̇(2)(b; τ)+ K(b)q(2)(b; τ)

=

{
Q ,ρσα (b; τ)− 2[M ,ρ(b)q̈,σ (b; τ)+ C ,ρ(b)q̇,σ (b; τ)

+ K ,ρ(b)q,σ (b; τ)] −
[
M ,ρσ (b)q̈0(b; τ)

+ C ,ρσ (b)q̇0(b; τ)+ K ,ρσ (b)q0(b; τ)
]}
Sρσb (4)

where

q(2)α (b; τ) = q
,ρσ
α (b; τ)Sρσb (5)

where b is the vector of nodal random variables, qα is the vector of
nodal displacement-type variables, τ is forward time variable, N̄ is
the number of nodal randomvariables.M, C andK are systemmass
matrix, damping matrix and system stiffness matrix, respectively.
Qα , q and S

ρσ

b are load vector, displacement and the covariance
matrix of the nodal random variable, respectively. N is the number
of degrees of freedom in the system. (.)0 is zeroth-order quantities,
taken at means of random variables, (.),ρ is first partial derivatives
with respect to nodal random variables, (.),ρσ is second partial
derivatives with respect to nodal random variables.
In Eqs. (2)–(4) the zeroth-order mass, damping and stiffness

matrices and local vector and their first and second mixed deriva-
tives with respect to nodal random variables b` are defined as fol-
lows;
Zeroth-order functions

M(b) =
∫
Ω

ϕᾱ`
0
ᾱϕiαϕiβdΩ (6)

C(b) =
∫
Ω

ϕᾱϕβ̄(ϕ
0
ᾱ`
0
β̄
ϕiαϕiβ + β

0
ᾱC
0
ijklβ̄BijαBklβ)dΩ (7)
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K(b) =
∫
Ω

ϕᾱC0ijklᾱBijαBklβdΩ (8)

Qα(b; τ) =
∫
Ω

ϕᾱϕβ̄`
0
ᾱ f
0
iβ̄ϕiαdΩ +

∫
∂Ωσ

ϕᾱ t̂0iᾱϕiαd(∂Ω). (9)

First partial derivatives

M ,ρ(b) =
∫
Ω

ϕᾱ`
,ρ

ᾱ ϕiαϕiβdΩ (10)

C ,ρ(b) =
∫
Ω

ϕᾱϕβ̄ [(α
,ρ

ᾱ `
0
β̄
+ α0ᾱ`

,ρ

β̄
)ϕiαϕiβ

+ (β
,ρ

ᾱ C
0
ijklβ̄ + β

0
ᾱC

,ρ

ijklβ̄
)BijαBklβ ]dΩ (11)

K ,ρ(b) =
∫
Ω

ϕᾱC
,ρ

ijklᾱBijαBklβdΩ (12)

Q ,ρα (b; τ) =
∫
Ω

ϕᾱϕβ̄(`
,ρ

ᾱ f
0
iβ̄ + `

0
ᾱ f
,ρ

iβ̄
)ϕiαdΩ

+

∫
∂Ωσ

ϕᾱ t̂
,ρ

iᾱ ϕiαd(∂Ω). (13)

Second partial derivatives

M ,ρσ (b) =
∫
Ω

ϕᾱ`
,ρσ

ᾱ ϕiαϕiβdΩ (14)

C ,ρσ (b) =
∫
Ω

ϕᾱϕβ̄ [(α
,ρσ

ᾱ `0
β̄
+ α

,ρ

ᾱ `
,σ

β̄
+ α

,σ
ᾱ `

,ρ

β̄
+ α0ᾱ`

,ρσ

β̄
)ϕiαϕiβ

+ (β
,ρσ

ᾱ C0ijklβ̄ + β
,ρ

ᾱ C
,σ

ijklβ̄
+ β

,σ
ᾱ C

,ρ

ijklβ̄
+ β0ᾱC

,ρσ

ijklβ̄
)BijαBklβ ]dΩ (15)

K ,ρσ (b) =
∫
Ω

ϕᾱC
,ρσ

ijklᾱBijαBklβdΩ (16)

Q ,ρσα (b; τ) =
∫
Ω

ϕᾱϕβ̄(`
,ρσ

ᾱ f
0
iβ̄ + `

,ρ

ᾱ f
,σ

iβ̄
+ `

,σ
ᾱ f

,ρ

iβ̄

+ `0ᾱ f
,ρσ

iβ̄
)ϕiαdΩ +

∫
∂Ωσ

ϕᾱ t̂
,ρσ

iᾱ ϕiαd(∂Ω). (17)

All the functions (6)–(17) are evaluated at the expectations b
of the nodal random variables b`, where Ω is angular Nyquist
frequency, ∂Ω is solid boundary, ϕᾱ is random field shape function
vector, ϕiα is system shape function matrix, Bijα is strain–nodal
displacement matrix and ` is coefficient of correlation. Cijklᾱ , fi
and t̂i are constitutive tensor, vector of body forces and vector of
boundary tractions, respectively.
The first two statistical moments for the random fields br(xk),

r = 1, 2, . . . , R, are defined as

E[br ] = b0r =
∫
+∞

−∞

brp1(br)dbr (18)

Cov(br , bs) = Srsb

=

∫
+∞

−∞

∫
+∞

−∞

(br − b0r )(bs − b
0
s )p2(br , bs)dbrdbs (19)

r, s = 1, 2, . . . , R.

The latter definition can be replaced by

Srsb = αbrαbsb
0
r b
0
sµbr bs (20)

with

αbr =

[
Var(br)
b0r

]1/2
µbr bs =

∫
+∞

−∞

∫
+∞

−∞

brbsp2(br , bs)dbrdbs

(21)

where, E [br ] , Cov(br , bs), Var(br) are the expectation value,

covariance and variance, respectively; µbr bs , αbr , p1(br) are corre-
lation functions, the coefficients of variation and probability den-
sity function (PDF), respectively. p2(br , bs) is the joint PDF. R is the
random fields, which can represent randomness elastic modulus,
and mass density the material.
All the equations, solved consequently for zeroth-, first- and

second-order displacements, velocities and accelerations, make it
possible to compute the first two probabilistic moments of the
output in the form of expected values and cross-covariance’s of the
structural response.

2.2. Monte Carlo Simulation method

The MCS method is a quite versatile mathematical tool capa-
ble of handling situations where all other methods fail to succeed;
in structural dynamics, it has attracted intense attention only re-
cently following the widespread availability of inexpensive com-
putational systems. This computational availability has triggered
an interest in developing sophisticated and efficient simulation al-
gorithms. Shinozuka [24] had a pioneering role in introducing the
method to the field of structural dynamics. Shinozuka used the
MCS for simulating a random process as the superposition of a
large number of sinusoids having a uniformly distributed random
phase angle. Zhang and Ellingwood [25] used thismethod to obtain
the effects of randommaterial properties. However, in most of the
studies, the MCS was used to verify the results obtained from ap-
proximate methods [22,23].
The Monte Carlo Simulation generates a set of random values

of Xaccording to its probability distribution function. The set can
be written as X = {x1, x2, . . . , xN}, where N is the number of
simulation. For each values of X, the stiffness and mass matrices
are computed. At the end of N simulations, we have a random set
of displacement and stress values

{{
qβ
}
1 ,
{
qβ
}
2 ,
{
qβ
}
3 , . . . ,{

qβ
}
N

}
, {{σ }1 , {σ }2 , {σ }3 , . . . , {σ }N} for Xi. From this finite set

of solutions, the expected values of displacement and stress are
computed using the following formulas:

E{qβ} =
1
N

N∑
i=1

{
qβ
}
i (22)

E{σ } =
1
N

N∑
i=1

{σ }i . (23)

3. Numerical application

The main objective of this work is to compare the behavior
of two methodologies: perturbation techniques associated to the
SFEM and MCS method; offering to the practicing engineers an
overview of the techniques usually employed in the analysis of
the uncertain parameters of a structural system. In this study, the
comparison of the stochastic dynamic responses of a cable-stayed
bridge system subject to ground motion is performed by using
perturbation based SFEM and MCS methods. Displacements and
other internal forces of the systems are obtained from methods
mentioned above by using different uncertainties of material
characteristics (elastic modulus and mass density) and compared
with each other.
For this objective, the Jindo Bridge designed by Rendel Palmer

and Tritton and built in South Korea is chosen as a practical ex-
ample to investigate stochastic response of a cable-stayed bridge
(Fig. 1). Jindo Bridge, which has three spans, the main span of 344
m and two side spans of 70 m (Fig. 2) subjected to earthquake
ground motion (Fig. 3), is selected as an application for the gen-
eralized perturbation based stochastic finite element method. The
stays are arranged in a fan configuration and converged at the
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Fig. 1. Jindo cable-stayed bridge.

Fig. 2. General arrangements of the Jindo Bridge.

top of the A-frame towers. The diameters of the stays are 56 mm,
67 mm, 76 mm and 87 mm. Each tower carries 24 stays and the
towers are 69 m height above the piers on which they are sup-
ported. Since a-frame towers are torsionally rigid, they have been
preferred for many cable-stayed bridges. The stiffening girder is of
a hexagonal shape and continues from one end to the other. The
stiffening girder and the towers of the Jindo Bridge were made
from steel [26]. A damping ratio of 2% is adopted for the response
calculations of cable-stayed bridge. To investigate the dynamic re-
sponses of the Jindo Bridge, two-dimensional mathematical model
is used for calculations (Fig. 2). It has been shown that a two-
dimensional analysis of the cable-stayed bridge provides natural
frequencies and mode shapes which are in close agreement with
those obtained by three-dimensional analysis [27].
For the dynamic analysis, YPT330 component of Yarimca station

records of 1999 Kocaeli Earthquake (Fig. 3) is utilized as ground
motion [28]. This ground motion continued up 35.0 s is applied to

Fig. 3. Acceleration time history of Kocaeli earthquake (YPT330), 1999.

Table 1
Statistics of the random variables for Jindo Bridge.

Random variable Substructures Mean value

Elastic modulus
E1 Cables 1.5186× 108 kN/m2

E2 All elements 1.9500× 108 kN/m2

E3 Girders and towers 2.0500× 108 kN/m2

Mass density
γ1 Cables 8330 kg/m3

γ2 All elements 12 600 kg/m3

γ3 Girders and towers 15 570 kg/m3

the system in a vertical direction. The dynamic responses of the
cable-stayed bridge are obtained for a time interval of 0.005 s.
The cable-stayed bridge is modeled as 169 stochastic finite

elements of different length (169 random variables, ρ, σ = 1,
2, . . . , 169; xρ are ordinates of the element midpoints). MCS
method is simulated for 10000 simulations.
Stochastic analysis of a cable-stayed bridge is performed for

earthquake ground motion by taking into account uncertainties of
material properties. For this purpose, two different uncertainties of
material characteristics are considered. These are elastic modulus
and mass density.
Case I: Random material property is elastic modulus (E)
The elastic modulus (E3) of 130 elements constituting Jindo

Bridge’s towers and decks are 2.05 × 108 kN/m2 (Table 1), how-
ever, five different elastic modulus belonging to 30 cable elements
are changing between 1.424×108 kN/m2 and 1.561×108 kN/m2.
The perturbation method applied uses only one variable for co-
variance matrix. On the other hand, MCS method considers each
elastic modulus separately. For this reason, when applying per-
turbation method, firstly it should be determined which variable
(elasticmodulus) is used to calculate covariancematrix? In this ex-
ample, the elastic modulus giving the nearest displacement value
to the one obtained fromMCSmethod was decided by trying three
different elastic modules. After this process, other steps are con-
tinued with the elastic modulus selected. Table 1 presents elas-
tic modulus’ statistics used during perturbation method. Here, E1
express the mean values of cables’ elastic modulus. On the other
hand, E2 gives the mean values of all elements (cables, towers and
deck).
Coefficient of variation (COV) was selected as α = 0.1 for these

randomvariables [1]. The perturbation based SFEM is very efficient
for low material variability. Higher than 0.1–0.15 coefficients of
variation (COV) of input random variables demand higher-order
Taylor expansion in equilibrium equations and higher-order ex-
pansion of the solution [1,3]. The respective expectation and corre-
lation function for the elastic modulus Eρ are assumed as follows:

E[E1] = 1.5186× 108

E[E2] = 1.95× 108

E[E3] = 2.05× 108
λ = 10 (24)

µ(Eρ, Eσ ) = exp

(
−

∣∣xρ − xσ ∣∣
λl

)
(25)
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a b

Fig. 4. Maximum vertical displacements at the deck of Jindo Bridge (a) and maximum horizontal displacements along Jindo Island tower (b) for random elastic modulus.

where xρ , l and λ are ordinates of the element midpoints (n ran-
dom variable, ρ, σ = 1, 2, . . . , n), structural member length and
decay factor.
Case II: Random material property is mass density (γ )
Similar to elastic module’s situation, the mass densities are

different for cables, decks and towers. The mass density belonging
to materials forming the cables is 8330 kg/m3 (Table 1). However,
the mean value of mass densities of all elements is 12 600 kg/m3.
15 570 kg/m3 states the mean value of mass densities of towers
and decks except for cables as shown in Table 1.
The expectation, correlation function and coefficient of varia-

tion of the mass density are given, respectively, as follows:

E[γ1] = 8330
E[γ2] = 12 600 λ = 10
E[γ3] = 15 570

(26)

µ(ρρ, ρσ ) = exp

(
−

∣∣xρ − xσ ∣∣
λl

)
(27)

α = 0.1.

4. Numerical results

4.1. Responses of the Cable-stayed bridge for random elastic modulus

In the first part of this study, cable-stayed bridge responses
with respect to random elastic modulus according to perturbation
based SFEMandMCSmethods are determined comparedwith each
other.
The absolute maximum vertical displacement responses of the

bridge deck and horizontal displacements along the Jindo Island
tower obtained from perturbation based SFEM and MCS methods
for random elastic module are shown in Fig. 4 and Table 2. Two
analyses give very close results each other at the middle point of
deck and at the top point of tower wheremaximum displacements
occurred. If consider average difference obtained from perturba-
tion method, E1 gives the best result according to MCS (4.78%) for
deck and (1.87%) for tower.
Here, it is seen that the best results are obtained from E1 value.

Therefore, other internal forces (axial forces, shear forces and
bending moments) are given for only this elastic module (Figs. 5, 6
and Tables 3, 4).
The maximum axial forces, shear forces and bending moments

for deck of the Jindo Bridge are presented in Fig. 5. It is seen from
Fig. 5 and Table 3 that values acquired fromMCS and perturbation
methods are closed to each other. As shown in Table 3, the

minimum differences between the axial forces, shear forces and
bending moments of these two methods are 0.12%, 0.07% and
0.18%, respectively. Average differences for these internal forces
are about 3.70%, 5.50% and 3.49%, respectively. Also in this table
(Table 3), the meanmaximum values acquired by the perturbation
based SFEM are smaller than those calculated by the MCS method.
Fig. 6 presents axial forces, shear forces and bending moments

along tower height for Jindo Island according to MCS method and
perturbation based SFEM. The results obtained from the perturba-
tionmethod are close to the results fromMCSmethod as seen Fig. 6
and Table 4. Theminimumabsolute differences between these two
methods for axial forces, shear forces and bending moments are
about 0.57%, 0.13% and 0.12%, respectively. As shown in Table 4,
average differences for these internal forces are about 3.52%, 4.60%
and 1.32%, respectively. Themean of maximum internal forces cal-
culated by the Perturbation method are compared with those of
themaximumvalues obtained by theMCS dynamic analysis for the
Jindo Island tower in Table 4. In addition, here the internal forces
obtained by the MCS dynamic analysis are higher than the mean
of maximum values by the perturbation method along the tower
height.

4.2. Responses of the cable-stayed bridge for random mass density

In the second part of this study, cable-stayed bridge responses
for random mass density are calculated and compared with each
other according to perturbation based SFEM and MCS methods.
The vertical displacements on the Jindo Bridge deck and the

horizontal displacements along the Jindo Island tower obtained
from perturbation based SFEM and MCS for random mass density
of the cable-stayed bridge system are plotted in Fig. 7. The results
obtained from the perturbation method are close to the results
from MCS method as seen Fig. 7 and Table 5. Two analyses types
gives close results each other at the middle point of deck and at
the top point of tower wheremaximum displacements occurred. If
consider average differences obtained from perturbation method,
γ1 gives the best result according to MCS for deck (5.66%) and for
tower (0.22%).
If the results obtained from these displacements arementioned;

for the SFEM analysis of this bridge system, minimal mass density
(γ1) gives the nearest results calculated byMCSmethod. Therefore,
other internal forces (axial forces, shear forces and bending
moments) are given for thismass density (Figs 8, 9 and Tables 6, 7).
The absolute maximum axial forces, shear forces, bending

moments calculated by both perturbation based SFEM, and MCS
dynamic analyses for the bridge deck are shown in Fig. 8. It is
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Table 2
The results of the vertical displacements at the deck of Jindo Bridge and the horizontal displacements at the Jindo Island tower for different random elasticmodulus according
to perturbation based SFEM and MCS.

MCS Perturbation (E1) Perturbation (E2) Perturbation (E3)

Deck
Maximum displacement 0.9103 m 0.9042 m 0.9187 m 0.9234 m
Average displacement 0.41472 m 0.41535 m 0.43698 m 0.44330 m
Average difference (According to MCS) 4.78% 12.49% 15.10%

Tower
Maximum displacement 0.3741 m 0.3770 m 0.3813 m 0.3824 m
Average displacement 0.2068 m 0.2096 m 0.2128 m 0.2137 m
Average difference (According to MCS) 1.87% 4.04% 4.62%

a

b

c

Fig. 5. Maximum axial forces (a), shear forces (b) and bending moment (c) for deck of Jindo Bridge for random elastic module (E1).
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Table 3
The results of axial forces, shear forces and bending moments for deck of Jindo Bridge for random variable E1 .

MCS Perturbation

Axial forces

Maximum axial force 4109.917 kN 4130.062 kN
Minimum axial force 459. 224 kN 442.965 kN
Average axial force 2197.70 kN 2158.70 kN
Minimum difference (According to MCS) 0.12%
Average difference (According to MCS) 3.70%

Shear forces

Maximum shear force 1448.826 kN 1295.944 kN
Minimum shear force 309.693 kN 296.890 kN
Average shear force 654.421 kN 622.895 kN
Minimum difference (According to MCS) 0.07%
Average difference (According to MCS) 5.50%

Bending moments

Maximum bending moment 43373.1 kN m 41705.2 kN m
Minimum bending moment 188.5 kN m 195.9 kN m
Average bending moment 12006.5 kN m 11927.8 kN m
Minimum difference (According to MCS) 0.18%
Average difference (According to MCS) 3.49%

Table 4
The results of axial forces, shear forces and bending moments for Jindo Island tower for random variable E1 .

MCS Perturbation

Axial forces

Maximum axial force 4048.311 kN 3891.675 kN
Minimum axial force 639.235 kN 600.805 kN
Average axial force 3155.716 kN 3055.149 kN
Minimum difference (According to MCS) 0.57%
Average difference (According to MCS) 3.52%

Shear forces

Maximum shear force 988.403 kN 980.378 kN
Minimum shear force 699.333 kN 675.733 kN
Average shear force 789.536 kN 755.343 kN
Minimum difference (According to MCS) 0.13%
Average difference (According to MCS) 4.60%

Bending moments

Maximum bending moment 34624.7 kN m 34346.3 kN m
Minimum bending moment 482.2 kN m 472.3 kN m
Average bending moment 12054.9 kN m 11985.8 kN m
Minimum difference (According to MCS) 0.12%
Average difference (According to MCS) 1.32%

Table 5
The results of the vertical displacements at the deck of Jindo Bridge and the horizontal displacements at the Jindo Island tower for different randommass density according
to perturbation based SFEM and MCS.

MCS Perturbation (γ1) Perturbation (γ2) Perturbation (γ3)

Deck
Maximum displacement 0.9124 m 0.9034 m 0.9299 m 0.9361 m
Average displacement 0.4149 m 0.4116 m 0.4204 m 0.4385 m
Average difference (According to MCS) 5.66% 7.64% 12.50%

Tower
Maximum displacement 0.3768 m 0.3757 m 0.3810 m 0.3864 m
Average displacement 0.2081 m 0.2081 m 0.2115 m 0.2251 m
Average difference (According to MCS) 0.22% 2.06% 4.16%

Table 6
The results of axial forces, shear forces and bending moments for deck of Jindo Bridge for random variable γ1 .

MCS Perturbation

Axial forces

Maximum axial force 4128.78 kN 4132.06 kN
Minimum axial force 466. 48 kN 443.97 kN
Average axial force 2177.73 kN 2250.60 kN
Minimum difference (According to MCS) 0.16%
Average difference (According to MCS) 4.35%

Shear forces

Maximum shear force 1386.73 kN 1292.61 kN
Minimum shear force 312.21 kN 298.56 kN
Average shear force 636.81 kN 625.41 kN
Minimum difference (According to MCS) 0.06%
Average difference (According to MCS) 3.88%

Bending moments

Maximum bending moment 43301.9 kN m 41100.2 kN m
Minimum bending moment 180.5 kN m 192.9 kN m
Average bending moment 12071.8 kN m 11644.1 kN m
Minimum difference (According to MCS) 0.30%
Average difference (According to MCS) 3.89%
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a b

c

Fig. 6. Maximum axial forces (a), shear forces (b) and bending moment (c) for Jindo Island tower for random elastic module (E1).

a b

Fig. 7. Maximum vertical displacements at the deck of Jindo Bridge (a) and maximum horizontal displacements along Jindo Island tower (b) for randommass densities.

seen from Fig. 8 and Table 6 that values acquired from MCS are
closed to the ones from perturbation method. As shown in Table 6,
while minimum differences between the axial forces, shear forces
and bending moments of these two methods are 0.16%, 0.06%
and 0.30%, respectively, average differences for these internal
forces are about 4.35%, 3.88% and 3.89%, respectively. The mean of
maximum internal forces obtained from theMCS dynamic analysis
are generally higher than the maximum values obtained using
perturbation method (Table 6).
The last comparison for randommass density is about the axial

forces, shear forces and bendingmoments for Jindo Island tower as
shown in Fig. 9 and Table 7. As shown in Table 7, while minimum

differences between the axial forces of these two methods are
0.12%, average differences are about 3.91%. Also in this table, the
minimum absolute differences between these two methods for
shear forces and bending moments are about 0.01% and 0.34%,
respectively. Average differences for these internal forces are about
3.90%, 2.47% and 1.75%, respectively. The mean maximum values
that are obtained from the perturbation based SFEM are smaller
than those calculated by the MCS method (Table 7).
If it is mentioned the other results obtained from this example;

for the analysis of this bridge system whose numerical properties
are presented (Fig. 2), it needs about 5 min for perturbation based
stochastic analysis, however, it needs about 8 h for MCS analysis
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a

b

c

Fig. 8. Maximum axial forces (a), shear forces (b) and bending moment (c) for deck of Jindo Bridge for randommass density (γ1).

with the PC which have Intel Pentium (R) 2.40 GHz CPU and 768
MB RAM.
The responses obtained show that selected correlation function

suitable for this example for chosen coefficient of variation (COV)
value (α = 0.10). In addition, the response values obtained
from random elastic modulus are generally higher than those from
randommass density.

5. Conclusions

In this paper, the comparison of the perturbation based SFEM
and MCS methods is performed for dynamic responses of a cable-
stayed bridge subjected to ground motion. The basic material

properties, such as mass density and modulus of elasticity are
supposed to be random variable in the analyses.
TheMCSmethod is awell-knownandgeneralmethodology that

can deal with all classes of engineering problems. It presents, how-
ever, high computational cost that has motivated many develop-
ments to attempt the reduction of the number of simulations. In
practice, all the formulations employ this method as a reference.
The SFEM, based on the perturbation technique, offers a very ef-
ficient alternative to the MCS method. The numerical application
in this study is shown that the perturbation method is able to pro-
vide, at an attractive computational cost, a good estimation of the
response variability.
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c

a b

Fig. 9. Maximum axial forces (a), shear forces (b) and bending moment (c) for Jindo Island tower for randommass density (γ1).

Table 7
The results of axial forces, shear forces and bending moments for Jindo Island tower for random variable γ1 .

MCS Perturbation

Axial forces

Maximum axial force 4065.48 kN 3895.56 kN
Minimum axial force 648.70 kN 610.81 kN
Average axial force 3172.49 kN 3076.15 kN
Minimum difference (According to MCS) 0.12%
Average difference (According to MCS) 3.90%

Shear forces

Maximum shear force 978.14 kN 967.12 kN
Minimum shear force 503.08 kN 477.05 kN
Average shear force 762.73 kN 752.12 kN
Minimum difference (According to MCS) 0.01%
Average difference (According to MCS) 2.47%

Bending moments

Maximum bending moment 34664.3 kN m 34202.2 kN m
Minimum bending moment 476.9 kN m 467.8 kN m
Average bending moment 12107.2 kN m 11880.5 kN m
Minimum difference (According to MCS) 0.34%
Average difference (According to MCS) 1.75%

The presented numerical technique iswell suited for computer-
aided analysis for structural systems. It was seen that this
technique is very suitable for chosen coefficient of variation (COV)
value (α = 0.10). The perturbation based SFEM should be
restricted to applications involving a low variability level of the
parameters.
Jindo Bridge modeled in this study, perturbation based SFEM

gives close results to MCS method for displacements, axial forces,
shear forces and bending moments. Therefore, it can be said that
perturbation method could be used instead of MCS method.
Finally, it is observed that the displacement and internal force

results in the deck and towers obtained from the perturbation

based SFEM are generally smaller than the mean of maximum
values obtained from the MCS method for chosen cable-stayed
bridge.
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