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SUMMARY

A stochastic finite element-based algorithm for probabilistic analysis of structural systems made of
composite sections with random material and geometrical properties under earthquake forces is proposed
in this paper. Uncertainties in the structural parameters can be taken into account in this algorithm. For
the perturbation-based stochastic finite element method, only the first two moments of random variables
need to be known, and is numerically much more efficient and feasible than simulation techniques. The
efficiency and accuracy of the proposed algorithm are validated by comparison with results of Monte
Carlo simulation method. A summary of stiffness matrix formulation and perturbation-based stochastic
finite element dynamic analysis formulation of structural systems made of composite sections is given.
These are followed by suitable numerical examples, which indicate that employment of such a dynamic
stochastic finite element method leads to significant economical, efficient and accurate solutions for the
dynamic analysis of composite structures with stochastic parameters under earthquake forces. Copyright
q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent trends in the construction of moment-framed buildings show the increased use of steel,
reinforced concrete and composite steel–concrete members functioning together. Such systems
make use of each type of member in the most efficient manner to maximize the structural and
economic benefits. In general, since composite systems realize the most efficient use of steel,
reinforced concrete and composite members in a structural system, this type of construction is
often more economical than the traditional either all-steel or all-reinforced concrete construction.
Composites are lightweight and flexible in net shape fabrication. Therefore, the construction time,
part redundancy and labor cost will be less for building composite structures due to ease of handling.

Probabilistic analysis is an appropriate tool for the analysis of structural systems with randomly
varying material and/or geometric properties. The inclusion of the parameter uncertainty in the
analysis of structures is essential for a more complete understanding of the structural behavior. Such
uncertainty can arise because of the numerous assumptions made when modeling the geometry,
material properties, magnitudes of loads and boundary conditions of the structural members.
Because of these uncertainties, the deterministic method can remain insufficient in a lot of structural
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system analyses. In the literature, several techniques have been proposed to evaluate the response
of structures with uncertain parameters. Monte Carlo simulation (MCS) is the most used among the
stochastic analysis methods for structural problems [1]. It lies on the generation of a defined number
of samples of the uncertain parameters and on the solution of the corresponding deterministic
problems. However, as the number of degrees of freedom of the structure and the number of
uncertain parameters increase, the Monte Carlo structural analyses become very heavy from a
computational point of view, and, in some cases, the computational effort makes them inapplicable
[2]. For this reason, some non-statistical alternative procedures have been proposed in the literature
[2–6]. On the other hand, stochastic finite element method (SFEM), which is one of the probabilistic
analysis methods, increases its reliability day-by-day. This method is applied in several fields in
civil engineering, especially simple or semi-complex structural systems. Most of them are based
on perturbation techniques, so that the SFEM is often identified as the classical finite element
method (FEM) coupled with a perturbation approach. The perturbation-based stochastic finite
element method (PSFEM) is applied in several fields in civil engineering, especially simple or
semi-complex structural systems.

The PSFEM has been widely applied to stochastic problems for analyzing uncertain systems
since it usually requires low computational resources. This method presents a version of the FEM,
which accounts for uncertainties in both the geometry and/or material properties of the structure,
as well as in the applied load. In the perturbation-based stochastic finite element analysis, only
the first two moments of random variables need to be known, whereas statistical techniques such
as the MCS method generally require knowledge of probability density functions (PDF) that are
usually not available in practice [2].

Composite structures made of steel–concrete beams and columns are nowadays common solu-
tions in the design of seismic resistant structures. Therefore, in the last 10 years, growing attention
has been given to finite element modeling and analysis of steel–concrete composite structures
[7]. Although there is an extensive literature on deterministic analysis of stiffened laminated
plates, shell, fiber reinforced polymer beams and on composite concrete slabs stiffened by steel
beams [8–13], the technical literature is not adequate on the stochastic dynamic analysis of struc-
tural systems made of composite sections. Starting from the knowledge of structure geometry,
the boundary conditions and material properties, the mass, stiffness and damping distribution of
the structure are expressed in a matrix form. To identify changes in the material and geometrical
properties of a structure, stochastic finite element is often required. In particular, the effects of
uncertainties in material and geometrical properties and stacking sequences on structural safety of
composite structures should be studied thoroughly if highly reliable composite structures are to be
designed.

Ngah and Young [14] studied an application of the spectral stochastic finite element method
(SSFEM) for predicting the performance of a composite structure with variable material constitutive
properties. It was observed that the SSFEM is applicable over a wider range of material variability
(standard deviation up to about 24% of mean). Antonio and Hoffbauer [15] performed structural
responses of statically loaded composite plate and shell structures with randomness in material
properties. In addition, it has been observed that there are very limited works available regarding
the PSFEM aspects of structures having composite sections. Very few researchers [4, 16, 17]
studied the PSFEM with random variable material and geometrical properties of composite struc-
tures. Kaminski [4] proposed to generalize nth order stochastic perturbation technique that can be
applied to solve some boundary value or boundary initial problems in computational engineering
with random parameters. He concluded that stochastic convergence of this methodology strongly
depends on the coefficient of variation (COV) of the input random variable. Kaminski and Kleiber
[16] carried out the stochastic second order and second moment perturbation analysis for homog-
enization of the two-phase periodic composite structure. Ganesan and Kowda [17] investigated the
buckling of prismatic composite beam-columns with the objective of determining the mean values,
mean square values, and standard deviation values of the buckling loads. The randomness in the
material and geometric properties of the laminated beam-columns is modeled using homogeneous
stochastic fields in space by them. The perturbation method is employed in the context of stochastic
analysis.
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The focus of the present paper is to perform the effects of random material and geometrical prop-
erties on structural safety of steel–concrete composite structural systems by using the PSFEM and
MCSmethod. For this reason, dynamic problems of beam-type structures with parameters described
deterministically and/or stochastically proposed by Kleiber and Hien [2] were programmed in
FORTRAN language by the authors and incorporated into a general-purpose computer program
for dynamic deterministic and stochastic analysis of medium and large-scale three-dimensional
frames. The program is modified for the stochastic dynamic analysis of composite frame systems
based on the PSFEM and is used in the stochastic dynamic analysis of the composite system.
Then, this program is combined to the MCS method. The connection parameters, material and
geometrical properties are assumed to be random variables in the analyses. The Kocaeli earthquake
that occurred in 1999 is considered as a ground motion. In this paper, earthquake phenomenon was
adopted to be deterministic. During stochastic analysis, displacements and internal forces of the
systems are obtained from PSFEM and MCS method by using different uncertainties of material
(elastic module and mass density) and geometrical (cross-sectional area) characteristics. First, the
stochastic analysis results acquired from all the random variables are compared with each other
separately, and second the efficiency and accuracy of the proposed algorithm are validated by
comparison with the results of MCS method.

2. FORMULATION

In this section, stiffness matrix formulation of composite systems and perturbation-based stochastic
finite element dynamic analysis formulation of composite frame systems are given.

2.1. Stiffness matrix formulation of 3-D composite frame

The stiffness matrix formulation of the composite system is given according to References [9, 18].
For non-homogeneous cross-sections, the elastic modulus, E , is a function of position [i.e.
E=E(y, z)]. Let the reference modulus be given by Er . Consider a prismatic 3-D beam element
of length L with an arbitrarily shaped composite cross section consisting of materials in contact,
each of which can surround a finite number of inclusions, with modulus of elasticity E j , shear
modulus G j and mass density � j , occupying the regions � j ( j =1,2, . . . ,K ) of the y, z plane
(Figure 1). K is the number of materials. The materials of these regions are assumed homogeneous,
isotropic and linearly elastic. These boundary curves are piecewise smooth, i.e. they may have a
finite number of corners. Without loss of generality, it may be assumed that Cyz and Myz are the
principal systems of axes through the cross-section’s centroid and shear center, respectively.

The nodal displacement vector in the local coordinate system, as shown in Figure 1, can be
written as

{qB}T={ui ,vi ,wi ,�xi,�yi,�zi,u j ,v j ,w j ,�xj,�yj,�zj} (1)

where ui , u j , vi , v j , wi and w j , are axial displacements at joints i and j , y-direction transverse
displacement at joints i and j , z-direction transverse displacement at joints i and j , respectively. �xi,
�xj, �yi, �yj, �zi and �zj are rotation displacement in x-direction at joints i and j , y-direction rotation
displacement at joints i and jand z-direction rotation displacement at joints i and j , respectively.

The nodal load vector in the local coordinate system, as shown in Figure 1, can be written as

{Q�}T={Ni ,Qyi,Qzi,Mxi,Myi,Mzi,N j ,Qyj,Qzj,Mxj,Myj,Mzj} (2)

where Ni ,N j,Qyi,Qyj,QziandQziare axial forces at joints iand j , y-direction shear force at joints
i and j , z-direction shear force at joints i and j , respectively. Mxi, Mxj , Myi, Myj, Mzi and Mzj are
torque in x-direction at joints i and j , y-direction bending moment at joints i and j and z-direction
bending moment at joints i and j , respectively.
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Figure 1. Prismatic beam of an arbitrarily shaped composite cross section (a)
and occupying the 2-D region? (b).

The nodal displacement and load vectors given in Equations (1) and (2) are related with the
12×12 local stiffness matrix of the spatial composite beam element written as

[K��]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 0 0 0 0 0 k17 0 0 0 0 0

0 k22 0 0 0 k26 0 k28 0 0 0 k2,12

0 0 k33 0 k35 0 0 0 k39 0 k3,11 0

0 0 0 k44 0 0 0 0 0 k4,10 0 0

0 0 k53 0 k55 0 0 0 k59 0 k5,11 0

0 k62 0 0 0 k66 0 k68 0 0 0 k6,12

k71 0 0 0 0 0 k77 0 0 0 0 0

0 k82 0 0 0 k86 0 k88 0 0 0 k8,12

0 0 k93 0 k95 0 0 0 k99 0 k9,11 0

0 0 0 k10,4 0 0 0 0 0 k10,10 0 0

0 0 k11,3 0 k11,5 0 0 0 k11,9 0 k11,11 0

0 k12,2 0 0 0 k12,6 0 k12,8 0 0 0 k12,12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

The k�� coefficients of stiffness matrix of Equation (3) can be written as:

k11 = −k71=k17=−k77= Er Ax

L
(4)
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k22 = −k28=−k82=k88= 12ErGr AIz
Gr AL3+12ay Er Iz L

(5)

k26 = k2,12=k62=−k68=−k86=−k8,12=k12,2=−k12,8= 6ErGr AIz
Gr AL2+12ay Er Iz

(6)

k33 = −k39=−k93=k99= 12ErGr AIy
Gr AL3+12az Er Iy L

(7)

k59 = −k3,11=−k53=−k35=k95=k9,11=−k11,3=k11,9= 6ErGr AIy
Gr AL2+12az Er Iy

(8)

k44 = −k4,10=−k10,4=k10,10= Gr It
L

(9)

k55 = k11,11= 4ErGr Iy AL2+12az E2
r I

2
y

Gr AL3+12az Er Iy L
(10)

k5,11 = k11,5= 2ErGr Iy AL2+12az E2
r I

2
y

Gr AL3+12az Er Iy L
(11)

k66 = k12,12= 4ErGr Iz AL2+12ay E2
r I

2
z

Gr AL3+12ay Er Iz L
(12)

k6,12 = k12,6= 2ErGr Iz AL2+12ay E2
r I

2
z

Gr AL3+12ay Er Iz L
(13)

where Er , Gr , A, L are the modulus of elasticity of the reference material, the shear modulus of
reference material, composite cross-sectional area, composite element length, Iy, Iz are the bending
moments of inertia of the composite cross-section with respect to y and z axes, respectively.

Iy =
K∑
j=1

E j

Er

∫
� j

z2d� j , (14a)

Iz =
K∑
j=1

E j

Er

∫
� j

y2d� j (14b)

A =
K∑
j=1

G j

Gr

∫
� j

d� j (15a)

Ax =
K∑
j=1

E j

Er

∫
� j

d� j (15b)

where ignoring the torsional warping, It is the polar moment of inertia of the composite cross-
section given as:

It =
K∑
j=1

E j

Er

∫
� j

(y2+z2)d� j (16)

It is worth noting that the reduction of Equations (14a), (14b), (15b), (16) using the modulus of
elasticity Er and of Equation (15a) using the shear modulus Gr of the reference material could
be achieved using any other material, considering it as reference material.
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The shear deformation coefficients; ay , az are established equating the approximate formula of
the shear strain energy per unit with the exact one given and are obtained as [19]:

ay = A

Er�2

K∑
j=1

∫
� j

E j ((∇�) j −d) ·((∇�) j −d)d� j (17a)

az = A

Er�2

K∑
j=1

∫
� j

E j ((∇�) j −h) ·((∇�) j −h)d� j (17b)

where (∇) j ≡ iy(�/�y)+iz(�/�z) is a symbolic vector with iy , iz the unit vectors along y and z
axes, respectively, � is given from

�=2(1+�)Iy Iz (18)

� is the Poisson ratio of the cross-section materials, d and h are vectors defined as

d =
(

�Iy
y2−z2

2

)
iy+(�Iy yz)iz (19a)

h = (�Iz yz)iy+
(

�Iz
z2− y2

2

)
iz (19b)

where � and � are stress functions [9].
2.2. SFEM

In the SFEM, the deterministic finite element formulation is modified using the perturbation
technique or the partial derivative method to incorporate uncertainty in the structural system. Since
the basic variables are stochastic, every quantity computed during the deterministic analysis, being
a function of the basic variables, is also stochastic. Therefore, the efficient way to arrive at the
stochastic response may be to keep account of the stochastic variation of the quantities at every
step of the deterministic analysis in terms of the stochastic variation of the basic variables.

The basic idea is conceptually simple. However, the implementation in actual analysis may not
be simple since it involves the computation and assembly of large matrices of partial derivatives
of the various quantities in terms of the basic variables. Furthermore, devising methodologies
to transform the spatially correlated random fields into the uncorrelated random fields renders
the implementation more complicated. There are two fundamental ways to solve the stochastic
problem: (i) analytical approach and (ii) numerical approach. Among analytical approaches, the
perturbation method is widely used because of its simplicity. Numerical methods such as MCS
is generally applicable to all types of stochastic problems and is often used to verify the results
obtained from analytical methods. A detailed discussion of these methods is presented below.

2.2.1. PSFEM formulation. The perturbation method is the most widely used technique for
analyzing uncertain systems. This method consists of expanding all the random variables of an
uncertain system around their respective mean values via Taylor series and deriving analytical
expressions for the variation of desired response quantities such as natural frequencies and mode
shapes of a structure due to small variation of those random variables. The basic idea behind the
perturbation method is to express the stiffness and mass matrices and the responses in terms of
Taylor series expansion with respect to the parameters centered at the mean values. Generally, the
Taylor series is expanded only to the first order. That is why this method is often referred to as
first-order perturbation method.

Since the deterministic equations are valid for the MCS analysis as well, the essential differences
are observed in case of perturbation-based analysis. Let us consider a deterministic equation of
motion in the form of

M��q̈�+C��q̇�+K��q� =Q� (20)
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where K��, M��,C�� denote the stiffness matrix, mass matrix and damping matrix, q̈�, q̇�, q� denote
the acceleration, velocity, displacement, respectively. The stochastic perturbation-based approach
usually consists of up to the second-order equations obtained starting from the deterministic ones.

The perturbation stochastic finite element equations describing dynamic response of the single
random variable system for zeroth, first and second order [2]:

Zeroth-order equation (€0 terms, one system of N linear simultaneous ordinary differential
equations for q0�(b0l ;	), �=1,2, . . . ,N )

M0
��(b

0
l )q̈

0
�(b0l ;	)+C0

��(b
0
l )q̇

0
�(b0l ;	)+K 0

��(b
0
l )q

0
�(b0l ;	)=Q0

�(b
0
l ;	) (21)

First-order equations, rewritten separately for all random variables of the problem (€1 terms, N̄
systems of N linear simultaneous ordinary differential equations for q ,�

� (b0l ;	),�=1,2, . . . , N̄ ,
�=1,2, . . . ,N )

M0
��(b

0
l )q̈

,�
� (b0l ;	)+C0

��(b
0
l )q̇

,�
� (b0l ;	)+K 0

��(b
0
l )q

,�
� (b0l ;	)=Q,�

� (b0l ;	)
−[M ,�

��(b
0
l )q̈

0
�(b0l ;	)+C ,�

��(b
0
l )q̇

0
�(b0l ;	)+K ,�

��(b
0
l )q

0
�(b0l ;	)]

(22)

Second-order (€2 terms, one system of N linear simultaneous ordinary differential equations for
q2�(b0l ;	),�=1,2, . . . ,N )

M0
��(b

0
l )q

,�
� (b0l ;	)+C0

��(b
0
l )q

,�
� (b0l ;	)+K 0

��(b
0
l )q

,�
� (b0l ;	)={Q,�


� (b0l ;	)
−2[M ,�

��(b
0
l )q

,

� (b0l ;	)+C ,�

��(b
0
l )q

,

� (b0l ;	)+K ,�

��(b
0
l )q

,

� (b0l ;	)]

−[M ,�

�� (b0l )q

0
�(b0l ;	)+C ,�


�� (b0l )q
0
�(b0l ;	)+K ,�


�� (b0l )q
0
�(b0l ;	)]}Cov(br ,bs)

(23)

(·)(0) =(·)|{�}={�}(0) , (·)(,�)

i = �
��i

(·)|{�}={�}(0) , (·)(,�
)

i = �2

��2i
(·)|{�}={�}(0) . (24)

where b0� is the vector of nodal random variables, q� is the vector of nodal displacement-type
variables, 	 is forward time variable, N̄ is the number of nodal random variables. M0

��,C
0
�� and

K 0
�� are system mass matrix, damping matrix and system stiffness matrix, respectively. Q0

�, q
0
� and

Cov(br ,bs) are load vector, displacement and the covariance matrix of the nodal random variable,
respectively. N is the number of degrees of freedom in the system. (.)0 is zeroth-order quantities,
taken at means of random variables, (.),� is first partial derivatives with respect to nodal random
variables, (.),�
 is second partial derivatives with respect to nodal random variables.

The first two statistical moments for the random fields br (xk), r =1,2, . . . , R, are defined as

E[br ] = b0r =
∫ +∞

−∞
br p1(br )dbr (25)

Cov(br ,bs) = Srsb =
∫ +∞

−∞

∫ +∞

−∞
(br −b0r )(bs−b0s )p2(br ,bs)dbrdbs (26)

r,s = 1,2, . . . , R

The latter definition can be replaced by

Srsb =�br �bs b
0
r b

0
s�br bs (27)

with

�br =
[
Var(br )

b0r

]1/2
�br bs =

∫ +∞

−∞

∫ +∞

−∞
brbs p2(br ,bs)dbr dbs (28)
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where, E[br ], Cov(br ,bs),Var(br ), �br bs , �br , p1(br ) and p2(br ,bs) denote the spatial expectation,
covariance, variance, correlation functions, the coefficients of variation, PDF and the joint PDF,
respectively. R is the random fields, which can represent randomness in the cross-sectional area,
length of truss and beam members, thickness of plate and shell elements, elastic modulus and mass
density of the material, etc.

The main idea behind the second-order perturbation approach to the stochastic version of the
potential energy principle involves expanding all the random field variables in the problem, i.e.
elastic module Ci jkl [b(xk); xk], mass density � [b(xk); xk] and displacements ui [b(xk); xk] about the
spatial expectations of the random fields variables b(xk)={br (xk)}, denoted by b0(xk)={b0r (xk)},
via Taylor series with a given small parameter € and retaining terms up to second order. The
expansions are explicitly written as;

Ci jkl [b(xk); xk] =C0
i jkl [b0(xk); xk]+εC ,r

i jkl [b0(xk); xk]�br (xk)
+ 1

2ε
2C ,rs

i jkl [b0(xk); xk]�br (xk)�bs(xk) (29)

�[b(xk); xk] = �0[b0(xk); xk]+ε�,r [b0(xk); xk]�br (xk)
+ 1

2ε
2�,rs[b0(xk); xk]�br (xk)�bs(xk) (30)

where

ε�br (xk)=ε[br (xk)−b0r (xk)] (31)

is the first-order variation of br (xk) about b0r (xk), and

ε2�br (xk)�bs(xk)=ε2[br (xk)−b0r (xk)][bs(xk)−b0s (xk)] (32)

denotes the second-order variation of br (xk) and bs(xk) about b0r (xk) and b0s (xk), respectively.
All the equations, solved consequently for zeroth, first and second-order displacements, velocities

and accelerations, make it possible to compute the first two probabilistic moments of the output
in the form of expected values and cross-covariances of the structural response.

2.2.2. Monte Carlo method. TheMonte Carlo method is quite a versatile mathematical tool capable
of handling situations where all other methods fail to succeed; in structural dynamics, it has attracted
intense attention only recently following the widespread availability of inexpensive computational
systems. This computational availability has triggered an interest in developing sophisticated and
efficient simulation algorithms. Shinozuka [19] had a pioneering role in introducing the method
to the field of structural dynamics. Shinozuka used the Monte Carlo Simulation for simulating a
random process as the superposition of a large number of sinusoids having a uniformly distributed
random phase angle. Zhang and Ellingwood [20] used this method to obtain the effects of random
material properties. However, in most studies, the Monte Carlo Simulation was used to verify the
results obtained from approximate methods [21].

The Monte Carlo Simulation generates a set of random values of X according to its probability
distribution function. The set can be written as X ={x1, x2, . . . , xN } where N is the number of simu-
lations. For each values of X,the stiffness and mass matrices are computed. At the end of N simu-
lations, we have a random set of displacement and stress values {{q�}1,{q�}2,{q�}3, . . . , {q�}N },
{{
}1, {
}2,{
}3, . . . , {
}N } for Xi . From this finite set of solutions, the expected values of displace-
ment and stress are computed using the following formulas:

�{q�} = 1

N

N∑
i=1

{q�}i (33)

�{
} = 1

N

N∑
i=1

{
}i (34)
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3. NUMERICAL EXAMPLES

The aim of this paper is to compare the stochastic dynamic responses of structural systems made
of composite cross-section for random material and geometrical properties. Therefore, perturbation
techniques are associated with the SFEM and MCS method, offering the practicing engineers
an overview of the techniques usually employed in the analysis of the uncertain parameters of
a structural system. During stochastic analysis, displacements and internal forces of the systems
are obtained from PSFEM and MCS method by using different uncertainties of material and
geometrical characteristics. The analysis results obtained from these two methods and all the
random variables are compared with each other.

COV was selected as �=0.1 for these random variables [2]. The PSFEM is very efficient for
low material variability. How it was supposed before Reference [2, 4] to be higher than 0.1–0.15
coefficients of variation (COV) of input random variables demand higher order Taylor expansion
in equilibrium equations and higher order expansion of the solution.

Example 1
A frame system of 4 spans and 10 stories consisting of beams and columns that have
composite cross-section subjected to earthquake ground motion (Figure 2) is selected as appli-
cation (Figure 3) for the generalized PSFEM. The system also has braced members. The
span length of the composite frame system is l=4.0m and story height is h=3.0m. The
composite columns (Figure 3(b)) and composite beams (Figure 3(c)) consist of a concrete part
(Ec=3.0×107 kPa,Gc=1.25×107 kPa,�c=2500kg/m3,�=0.20) (reference material) stiffened
by a steel one (Es =2.1×108 kPa,Gs =8.75×107 kPa,�s =7850kg/m3). The column has a
box-shaped closed composite cross-section as shown in Figure 3(b). The cross-section prop-
erties are computed as AE = AG =0.2954m2, Iy =0.00801m4, Iz =0.00243m4, It =0.084m4.
The composite beams are formed as a box-shaped composite cross-section, with uniform
Poisson’s ratio �=0.20 and damping ratios =0.05. The cross-section properties are computed
as AE = AG =0.147m2, Iy =0.0014m4, Iz =0.0064m4, It =0.063m4 (Figure 3(c)). The braced
members were chosen as Euronorm IPE140 profiles. The braced members are designed as bar
elements. The shear deformation coefficient for two sections is selected as ay =az =0.

For the dynamic analysis, YPT330 component of Yarimca station records of the 1999 Kocaeli
Earthquake (Figure 2) is utilized as ground motion [22]. This ground motion continued upto 35.0 s
is applied to the system in a horizontal direction. The dynamic responses of the composite frame
system are obtained for a time interval of 0.005 s.

The composite frame system is modeled by 310 stochastic finite elements of equal length (310
random variables, �,
=1,2, . . . ,310; x� are ordinates of the element midpoints). MCS method
was simulated for 10 000 simulations.

Figure 2. Acceleration time history of Kocadi earthquake (YPT330) 1999 [22].
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Figure 3. (a) The dimensions of the composite frame systems in Example 1; (b) the dimensions of column
cross-section; and (c) the dimensions of beam cross-section.

Absolute values of maximum displacements and internal forces are determined according to
PSFEM and MCS methods for the composite frame system. The analysis results obtained from
Case A, Case B and Case C are compared with each other.

Case A. Elastic modulus from material properties is chosen as random variable for composite
frame system. The other variables are considered as deterministic for steel–concrete composite
braced frame system. The elastic modulus of composite elements is chosen as reference material’s
(concrete) elastic modulus. On the other hand, braced members are made of steel. The perturbation
method applied uses only one variable for covariance matrix. On the other hand, MCS method
considers each elastic modulus separately. For this example, during PSFEM analysis, smaller elastic

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2011; 27:1473–1492
DOI: 10.1002/cnm



EFFECTS OF RANDOM MATERIAL 1483

modulus is selected as a random variable. This random variable is assumed to follow a normal
distribution with the COV 0.1. The respective expectation and correlation function and coefficient
of variation [2] for the elastic modulus E� are assumed as follows:

E[E�] = 3.0×107 �=10

�(E�,E
) = exp

(
−|x�−x
|

�l

)
�,
=1,2, . . . ,310

� = 0.10

where x�, l and � are ordinates of the element midpoints (n random variable, �, 
=1,2, . . . ,n),
structural member length and decay factor.

Case B. Mass density from material properties is chosen as random variable for a composite
frame system. The smallest of mass densities of all elements is selected as random variable. This
random variable is assumed to follow a normal distribution with the COV 0.1. The respective
expectation and correlation function [2] for the mass density �1 are assumed as follows:

E[�1] = 10727 �=10

�(��,�
) = exp

(
−|x�−x
|

�l

)
�,
=1,2, . . . ,310

� = 0.10

where x�, l and � are ordinates of the element midpoints (n random variable, �,
=1,2, . . . ,n),
structural member length and decay factor.

Case C. Cross-sectional area from geometrical properties is chosen as random variable for a
composite frame system. The cross-sectional areas are different for columns, beams and braced
members. The smallest of cross-section areas of all elements is selected as a random variable.
The respective expectation and correlation function and coefficient of variation [2] for the cross-
sectional areas (A�) are assumed as follows:

E[A�] = 0.0016�=10

�(A�, A
) = exp

(
−|x�−x
|

�

)
�,
=1,2, . . . ,310

� = 0.10

where x�, l and � are ordinates of the element midpoints (n random variable, �, 
=1,2, . . . ,n),
structural member length and decay factor.

Horizontal displacements along the left border of composite braced frame system according
to PSFEM and MCS methods are presented in Figure 4 for Cases A-C. The total horizontal
displacements values according to PSFEM of a composite frame system subjected to ground
motion are smaller than those of the MCS method for all random variables (Table I). However, the
displacement values obtained from the perturbation method are generally close to those calculated
using MCS method, as shown in Figure 4 and Table I. At the composite braced frame system
columns where maximum total horizontal displacement takes place, it can be observed that the
average differences between PSFEM and MCS method are 3.86, 5.57 and 5.74%, respectively for
Cases A–C. Also in Table I, the maximum horizontal displacement values that are obtained from the
random cross-sectional area are larger than those calculated by the random mass density and elastic
module.

The maximum bending moments and shear forces in the top joint of columns in every floor
for the composite frame system are plotted in Figure 5 for Cases A–C. The maximum moments
and shear forces occur in the columns at third axes for this frame system (Figure 3). It is seen
from Figure 5 and Table II that values obtained from MCS and perturbation methods are much
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Figure 4. Horizontal displacement of the composite frame system along story height for random
material and geometrical properties.

Table I. The results for the horizontal displacements along story height of composite frame system for
random material and geometrical properties.

Case A Case B Case C

PSFEM MCS PSFEM MCS PSFEM MCS

Maximum displacement (cm) 11.226 11.682 11.348 12.023 11.949 11.829
Average displacement (cm) 6.283 6.536 6.351 6.736 6.740 6.620
Difference (According to MCS) 3.91% 5.61% 5.75%
Average difference (According to MCS) 3.86% 5.57% 5.74%
PSFEM average difference (According to Case A) 0.7% 1.1%
MCS average difference (According to Case A) 3.01% 1.3%

closer to each other. As shown in Table II, the average differences between the moments of
these two methods are 1.97, 1.60 and 2.38%, respectively for Cases A–C. Likely to other results,
average differences between shear forces for PSFEM and MCS method are 1.81, 1.74 and 2.05%,
respectively (Table II). The mean of maxima values of internal forces obtained using MCS method
are generally higher than the maximum values obtained using PSFEM. Also in this table, the
maxima internal forces values that are obtained from the random elastic module are smaller than
those calculated by the random mass density and cross-sectional area.

It can be seen from these tables and figures that, the mean values of dynamic responses from the
three random variables are very similar to the result from the MCS method. For accurate dynamic
responses, it is necessary that the analysis technique incorporate the effect of structural parameter
randomness. This is of special importance for accurate stochastic dynamic analysis of composite
systems, which exhibit wide dispersion in structural parameters.

Example 2
A two-dimensional arch-type bridge subjected to earthquake ground motion (Figure 2) is chosen
as a second application (Figure 6) for stochastic dynamic analysis of the composite systems.
The bridge consists of the steel tubes, vertical load carrying systems, piers and the deck system.
The arch span consists of one-curved steel tubes. The bridge’s decks are consisting of composite
cross-section made from concrete and steel. The bridge’s length l=35m and its height is h=13m.
The composite decks (Figure 6(b)) are consisting of a concrete part (Ec=3.0×107 kPa,Gc=
1.25×107 kPa,�c=2500kg/m3,�=0.20) stiffened by a steel one (Es =2.1×108 kPa,Gs =8.75×
107 kPa,�s =7850kg/m3) (reference material is steel). The composite decks are formed as a
box-shaped composite cross-section, with uniform Poisson’s ratio �=0.30 and damping ratios
=0.05. The cross-section properties are computed as AE = AG =0.0424m2, Iy =0.00228m4,
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Figure 5. Maximum bending moments (a) and shear forces (b) at the top joint of the columns along story
height for the composite frame system for random material and geometrical properties.

Iz =0.00063m4, It =0.00662m4 (Figure 6(b)). The deformation coefficients for composite deck
section is selected as ay =az =0.

For the dynamic analysis, YPT330 component of Yarımca station records of 1999 Kocaeli
Earthquake (Figure 2) is utilized as ground motion [22]. The earthquake motion continued upto
35.0 s is applied to the bridge in a vertical direction. The dynamic responses of the composite
bridge are obtained for a time interval of 0.005 s.

The composite bridge is modeled by 85 stochastic finite elements (85 random variables,
�,
=1,2, . . . ,85; x� are ordinates of the element midpoints). MCS method was simulated for
10 000 simulation.

Absolute values of maximum vertical displacements and internal forces are determined according
to PSFEM and MCS method for this composite bridge system, and the analysis results compared
with each other for the all random variables.

Case A. Elastic module from material properties is chosen as a random variable for composite
bridge. The other variables are considered as deterministic for structural system. The elastic
modulus of composite elements is chosen as reference material (steel). The other sections are made
of only steel. For this reason, it is assumed that random variable is steel’s elastic modulus.

E[E�] = 2.1×108 �=10

�(E�,E
) = exp

(
−|x�−x
|

�l

)
�,
=1,2, . . . ,85;
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Figure 6. (a) The dimensions of the bridge in Example 2 and (b) the dimensions of deck of the bridge.

where x�, l and � are ordinates of the element midpoints (n random variable, �,
=1,2, . . . ,n),
structural member length and decay factor.

Case B. Mass density from material properties is chosen as random variable for composite
bridge system. The other variables are considered to be deterministic for this system. The mass
densities are different for decks and arch. The perturbation method applied uses only one variable
for covariance matrix. However, the smallest of mass densities of all elements, 7850kg/m3, is
selected as variable. The respective expectation and correlation function for the mass density (�p)
are assumed as follows:

E[�1] = 7850 �=10

�(��,�
) = exp

(
−|x�−x
|

�l

)
�,
=1,2, . . . ,85

where x�, l and � are ordinates of the element midpoints (n random variable, �,
=1,2, . . . ,n),
structural member length and decay factor.

Case C. Cross-section area from geometrical properties is chosen as random variable for
composite frame system. The other variables are considered to be deterministic for this system.
The cross-section areas are different for suspenders, decks and arch members. The perturbation
method applied uses only one variable for covariance matrix. The smallest of cross-sectional areas
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1488 Ö. ÇAVDAR, A. BAYRAKTAR AND A. ÇAVDAR

Figure 7. Vertical displacements along the bridge deck for random variable
material and geometrical properties.

Table III. The results for the vertical displacements along bridge deck for random
material and geometrical properties.

Case A Case B Case C

PSFEM MCS PSFEM MCS PSFEM MCS

PSFEM MCS PSFEM MCS PSFEM MCS
Maximum displacement (mm) 16.012 16.755 16.314 16.600 17.215 16.620
Average displacement (mm) 9.537 10.083 9.662 10.024 10.224 10.028
Difference (According to MCS) 4.45% 1.71% 3.69%
Average difference (According to MCS) 5.16% 3.91% 2.59%
PSFEM average difference (According to Case A) 1.31% 7.20%
MCS average difference (According to Case B) 0.59% 0.04%

of all elements is selected as variable. The respective expectation and correlation function and
COV for the cross-sectional areas (A�) are assumed as follows:

E[A�] = 0.00018 �=10

�(A�, A
) = exp

(
−|x�−x
|

�

)
�,
=1,2, . . . ,85

where x�, l and � are ordinates of the element midpoints (n random variable, �,
=1,2, . . . ,n),
structural member length and decay factor.

Vertical displacements along the bridge deck according to PSFEM and MCS methods are
presented in Figure 7 for Cases A–C. The displacement values obtained from the PSFEM are
generally close to those calculated using MCS method, as shown in Figure 7 and Table III. At the
bridge deck where maximum total vertical displacement takes place, it can be observed that the
average differences between PSFEM and MCS method are 5.16, 3.91 and 2.59%, respectively for
Cases A–C (Table III). The total vertical displacements of the deck of composite bridge are close
to each other for all random variables. However, means of maximum vertical displacement of the
deck of bridge obtained for Case C random cross-sectional area are larger than those of Cases A
and B random variables, as shown in Table III.

Maximum moments and shear forces of deck spans along the bridge system are plotted in
Figure 8 for Cases A–C. It is seen from Figure 8 and Table IV that values obtained from PSFEM
and MCS methods are closed to each other. As shown in Table IV, the average differences between
the moments of these two methods are 1.36, 1.52 and 1.52%, respectively for Cases A–C. Likely
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Figure 8. Maximum absolute bending moments (a) and shear forces (b) in the first joint of each element
of bridge’s deck for random variable material and geometrical properties.

to other results, average differences between shear forces for PSFEM and MCS method are 1.42,
1.65 and 5.05%, respectively (Table IV).

These figures show that displacements and internal forces, which occur on the deck of the
bridge, are very close to all random variables (elastic module, mass density and cross-section area)
for PSFEM. Similar variation is also observed for MCS method of deck of bridge (Table IV).
Therefore, it can be said that PSFEM could be used instead of MCS method.

There is a significant difference in CPU time between the proposed method and the MCS
method, while the results obtained from the proposed method are very close to those obtained
from the MCS method. Referring to CPU time, PSFEM requires a much smaller amount of time
(8 s for bridge system (Figure 6) and 8min for frame system (Figure 3)) than does the direct MCS
(5 h for bridge system (Figure 6) and 36 h for frame system (Figure 3)) is close to time other
methods do. It is seen that as the number of degrees of freedom of the structure and the number
of uncertain parameters increase, the structural analyses based on MCS 15 method become very
heavy from a computational point of view. Therefore, PSFEM is indeed practical and efficient.

The MCS method is suited for the incorporation within the existing finite element code. However,
it was found that computational time is a crucial issue for this method to deal with practical dynamic
problems. The PSFEM is presented in the simplest form for implementation into an existing finite
element program. Despite its simplicity, this method is applicable only for low variability of the
structural properties. However, the computational efficiency is a major advantage to consider it for
large problems where variability is low.
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It is seen also from the analysis results obtained from Cases A–C that dynamic response values
for random cross-sectional area (Case C) are generally greater than those obtained from random
elastic module and mass density for chosen systems.

4. CONCLUSIONS

In this paper, an efficient and accurate algorithm has been proposed to perform the probabilistic
dynamic analysis of steel–concrete composite systems. Uncertainties in the structural parameters
can be taken into account in this algorithm. The efficiency and accuracy of the proposed algorithm
are validated by comparison with results of MCS. The comparison of the perturbation-based SFEM
and MCS method for stochastic dynamic responses of structural systems made of composite
sections subjected to ground motion is performed with two examples. The effects of various
parameters on the dynamic responses of the composite frame and bridge are investigated, and the
following conclusions can be drawn.

These numerical results of two examples clearly indicate a clear assessment of the stochastic
dynamic responses of the proposed method in this paper and other analysis procedures. Although
two methods agree very well and are evidently comparable in accuracy, PSFEM proposed herein
is the most efficient and economical numerical solution procedure for the dynamic analysis of
random variable material and geometrical properties and may be widely applied to the analysis of
random structural dynamics problems.

These numerical conclusions show that displacements and internal forces are close to all random
variables (elastic module, mass density and cross-sectional area) for PSFEM and MCS method.
The dynamic response values obtained for the random variable cross-sectional area are generally
higher than those of the other random variables for chosen composite systems.

The accuracy of the obtained results compared with those obtained from MCS method solution
is remarkable. However, as the number of degrees of freedom of the structure and the number of
uncertain parameters increase, the structural analyses based on MCS becomes very heavy from a
computational point of view, and, in some cases, the computational effort makes them inapplicable.

The presented numerical technique is well suited for computer-aided analysis for structural
systems made of steel–concrete composite sections. The PSFEM is suited for problems with low
variability of the structural parameters. It was seen that this technique is very suitable for chosen
COV value (�=0.10). It should be mentioned that the approach proposed should turn out useful
in generating material data for the efficient SFEM analysis of various composites because of its
relatively low computational cost it should also find applications.
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