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Abstract. This paper demonstrates an application of the perturbation based stochastic finite element
method (SFEM) for predicting the performance of structural systems made of composite sections with
random material properties. The composite member consists of materials in contact each of which can
surround a finite number of inclusions. The perturbation based stochastic finite element analysis can provide
probabilistic behavior of a structure, only the first two moments of random variables need to be known, and
should therefore be suitable as an alternative to Monte Carlo simulation (MCS) for realizing structural
analysis. A summary of stiffness matrix formulation of composite systems and perturbation based stochastic
finite element dynamic analysis formulation of structural systems made of composite sections is given. Two
numerical examples are presented to illustrate the method. During stochastic analysis, displacements and
sectional forces of composite systems are obtained from perturbation and Monte Carlo methods by changing
elastic modulus as random variable. The results imply that perturbation based SFEM method gives close
results to MCS method and it can be used instead of MCS method, especially, if computational cost is taken
into consideration.

Keywords : stochastic finite element method; stochastic perturbation technique; composite; stiffness
matrix; monte carlo simulation.

1. Introduction

In recent years, the structural components and systems made of composite sections have received

greater recognition in applications toward transportation systems, office/residential buildings, highway

bridges, communication systems, offshore structures, etc. Such systems make use of each type of

member in the most efficient manner to maximize the structural and economic benefits. Composites are

lightweight and flexible in net shape fabrication. Therefore, the construction time, part redundancy and

labor cost will be less for building composite structures due to ease of handling. 

The traditional structural analyses are realized according to the assumption that geometrical and

material characteristics of a structure are deterministic. However, there are some uncertainties about

design values, certainly. These uncertainties can be illustrated geometrical characteristics (cross-sectional

area, flexural inertia, length etc.), material characteristics (elastic modulus, poisson’ ratio etc.), and magnitudes

and distributions of loads. Because of these uncertainties, deterministic method can remain insufficient
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in a lot of structural system analysis. On the other hand, stochastic finite element method, which is one

of the probabilistic analysis methods, increases its reliability day by day. This method is applied in

several fields in civil engineering, especially, simple or semi-complex structural systems.

While analytic solutions to most of problem are restricted to simple linear elastic structures under

dynamic loads, the recent research work is focused in obtaining numerical solutions that are more

appropriate for handling realistic problems. Stochastic finite element methods (SFEM) belong to this

second category (Kleiber and Hien 1992). SFEM approaches are based on the representation of

stochastic fields as a series of random variables and various methodologies have been developed in

order to achieve this objective. The response statistics are obtained using one of the stochastic finite

element methods: the perturbation or Taylor expansion based methods (Kleiber and Hien 1992,

Papadopoulos and Papadrakakis 1997, Kaminski 2006, Ghanem 1999), the weighted integral method

(Deodatis 1991, Yamazaki et al. 1988), the Neumann expansion method (Yamazaki et al 1998)and the

polynomial chaos expansion method (Ghanem and Spanos 1991). The perturbation method is the most

widely used technique for analyzing uncertain system. In the perturbation based stochastic finite

element analysis, only the first two moments of random variables need to be known, whereas statistical

techniques such as the Monte Carlo simulation generally require knowledge of probability density

functions that are usually not available in practice (Kleiber and Hien 1992). 

As composites is a recent field of arousing interest, the studies about this field had been increased day

by day. Although there is an extensive literature on deterministic analysis of stiffened laminated plates,

shell, fiber reinforced polymer beams and on composite concrete slabs stiffened by steel beams (Sapountzakis

2004, Sapountzakis and Mokos 2007, Wang and Li 2007, Sapountzakis and Mokos 2007, Lal et al 2007,

Vellascoa 2006) technical literature is not adequate on the stochastic dynamic analysis of structural systems

made of composite sections. Sapountzakis and Mokos (2007) studied the deterministic dynamic analysis

of 3-D composite beam elements subjected in dynamic twisting, bending, transverse or longitudinal

arbitrary loading. (Ngah and Young 2007) studied an application of the spectral stochastic finite element

method (SSFEM) for predicting the performance of a composite structure with variable material constitutive

properties. It was observed the SSFEM is applicable over a wider range of material variability (standard

deviation up to about 24% of mean). Antonio and Hoffbauer (2007) performed structural responses of

statically loaded composite plate and shell structures with randomness in material properties. In addition,

it has been observed that there are very limited works available regarding the perturbation based SFEM

aspects of structures have composite sections. Very few researchers (2006), Kaminski and Kleiber 2000,

Ganesan and Kowda 2005) studied the perturbation based stochastic finite element method with random

variable material and geometrical properties of composite structures. Kaminski (2006) proposed to generalize

nth order stochastic perturbation technique that can be applied to solve some boundary value or boundary

initial problems in computational engineering with random parameters. He concluded that stochastic

convergence of this methodology strongly depends on the coefficient of variation of the input random

variable. Kaminski and Kleiber 2000 carried out the stochastic second order and second moment perturbation

analysis for homogenization of the two-phase periodic composite structure. Ganesan and Kowda (2005)

investigated the buckling of prismatic composite beam-columns with the objective of determining the

mean values, mean square values, and standard deviation values of the buckling loads. The randomness

in the material and geometric properties of the laminated beam-columns is modeled using homogeneous

stochastic fields in space by them. The perturbation method is employed in the context of stochastic analysis.

The focus of the present paper is to perform the stochastic dynamic analysis of composite frame

systems by using the perturbation based stochastic finite element method. For that reason, dynamic problems

of beam-type structures with parameters described deterministically and/or stochastically proposed by
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Kleiber and Hien (1992) were programmed in FORTRAN language by the authors and incorporated

into a general-purpose computer program for dynamic deterministic and stochastic analysis of medium

and large-scale three-dimensional frames. The program is modified for the stochastic dynamic analysis of

composite frame systems based on the perturbation based stochastic finite element method and it is used

in the stochastic dynamic analysis of the composite system. Then, this program is combined to Monte

Carlo simulation. Two examples have been studied to demonstrate the efficiency and the range of applications

of the developed method. During stochastic analysis, displacements and sectional forces of the systems

are obtained from perturbation and Monte Carlo methods by using different uncertainties of material

characteristics. The analysis results obtained from these two methods are compared with each other.

2. Formulation

In this section, stiffness matrix formulation of composite systems and perturbation based stochastic

finite element dynamic analysis formulation of composite frame systems are given.

2.1 Stiffness matrix formulation of 3-D composite frame 

The stiffness matrix formulation of the composite system is given according to References

Sapountzakis and Mokos (2007), Pilkey (2002). For non homogeneous cross sections the elastic modulus,

E, is a function of position [i.e., E = E(y,z)]. Let the reference modulus be given by Er. Consider a

prismatic 3-D beam element of length L with an arbitrarily shaped composite cross section consisting of

materials in contact, each of which can surround a finite number of inclusions, with modulus of elasticity Ej,

shear modulus Gj and mass density ρj, occupying the regions Ωj ( j = 1,2,…., K) of the y, z plane (Fig. 1).

K is number of materials. The materials of these regions are assumed homogeneous, isotropic and

linearly elastic. These boundary curves are piecewise smooth, i.e., they may have a finite number of corners.

Without loss of generality, it may be assumed that Cyz and Myz are the principal systems of axes through the

cross section’s centroid and shear center, respectively.

The nodal displacement vector in the local coordinate system, as shown in Fig. 1, can be written as

{qB}T = {ui, vi, wi, θx i, θy i, θ z i, uj, vj, wj, θx j, θy i, θ z j,} (1)

where ui, uj, vi, vj, wi and wj, are axial displacement at joint i and j, y-direction transverse displacement at

joint i and j, z-direction transverse displacement at joint i and j, respectively. θ xi, θ xj, θ yi, θ yj, θ zi and θ zj

are rotation displacement in x-direction at joint i and j, y-direction rotation displacement at joint i and j

and z-direction rotation displacement at joint i and j, respectively.

The nodal load vector in the local coordinate system, as shown in Fig. 1, can be written as

{Qα}T = {Ni, Qyi, Qzi, Mx i, M y i, M z i, Nj, Qyj, Qzj, Mx j, My i, M z j,} (2)

where Ni, Nj, Qyi, Qyj, Qzi, and Qzi are axial force at joint i and j, y-direction shear force at joint i and j, z-

direction shear force at joint i and j, respectively. Mxi, Mxj, Myi, Myj, Mzi and Mzj are torque in x-direction

at joint i and j, y-direction bending moment at joint i and j and z-direction bending moment at joint i and

j, respectively. 

The nodal displacement and loads vectors given in Eqs. (1) and (2) are related with the 12 × 12 local
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stiffness matrix of the spatial composite beam element written as

(3)

The kαβ coefficients of stiffness matrix of Eq. (3) can be written as:

(4)

(5)

Kαβ[ ]

k11 0 0 0 0 0 k17 0 0 0 0 0

0 k22 0 0 0 k26 0 k28 0 0 0 k2 12,

0 0 k33 0 k35 0 0 0 k39 0 k3 11, 0

0 0 0 k44 0 0 0 0 0 k4 10, 0 0

0 0 k53 0 k55 0 0 0 k59 0 k5 11, 0

0 k62 0 0 0 k66 0 k68 0 0 0 k6 12,

k71 0 0 0 0 0 k77 0 0 0 0 0

0 k82 0 0 0 k86 0 k88 0 0 0 k8 12,

0 0 k93 0 k95 0 0 0 k99 0 k9 11, 0

0 0 0 k10 4, 0 0 0 0 0 k10 10, 0 0

0 0 k11 3, 0 k11 5, 0 0 0 k11 9, 0 k11 11, 0

0 k12 2, 0 0 0 k12 6, 0 k12 8, 0 0 0 k12 12,

=

k11 k71– k17 k77–
Er  Ax

L
------------= = = =

k22 k28– k82– k88

12ErGr  AIz

GrAL
3

12ayErIzL+
-----------------------------------------------= = = =

Fig. 1 Prismatic beam of an arbitrarily shaped composite cross section (a) and occupying the 2-D region Ω (b)



Perturbation based stochastic finite element analysis of the structural systems with composite... 133

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

where Er, Gr, A, L are the modulus of elasticity of the reference material, the shear modulus of reference

material, composite cross section area, composite element length, Iy, Iz are the bending moments of

inertia of the composite cross section with respect to y and z axes, respectively. 

(14a,b)

(15a,b) 

where ignoring the torsional warping, It is the polar moment of inertia of the composite cross section

given as:

k26 k2 12, k62 k68– k86– k8 12,– k12 2, k12 8,–
6ErGr  AIz

Gr  AL
2

12ayErIz+
--------------------------------------------= = = = = = = =

k33 k39– k93– k99

12ErGr  AIy

Gr  AL
3

12azErIyL+
------------------------------------------------= = = =

k59 k3 11,– k– 53 k35– k95 k9 11, k– 11 3, k11 9,

6ErGr  AIz

Gr  AL
2

12azErIy+
--------------------------------------------= = = = = = = =

k44 k4 10,– k10 4,– k10 10,

GrIt

L
---------= = = =

k55 k11 11,

4ErGrIy  AL
2

12azEr

2
Iy

2
+

Gr  AL
3

12azErIyL+
----------------------------------------------------------= =

k5 11, k11 5,

2ErGrIy  AL
2

12azEr

2
Iy

2
+

Gr  AL
3

12azErIyL+
----------------------------------------------------------= =

k66 k12 12,

4ErGrIy  AL
2

12ayEr

2
Iz

2
+

Gr  AL
3

12ayErIzL+
----------------------------------------------------------= =

k6 12, k12 6,

2ErGrIz  AL
2

12ayEr

2
Iz

2
+

Gr  AL
3

12ayErIzL+
----------------------------------------------------------= =

Iy
Ej

Er

----- z
2 Ωj          Iz,d

Ω
 j

 

∫
j 1=

K

∑
Ej

Er

----- y
2 Ωjd

Ω
 j

 

∫
j 1=

K

∑= =

A
Gj

Gr

------ Ωj          Ax,d
Ω

 j

 

∫
j 1=

K

∑
Ej

Er

----- Ωjd
Ω

 j

 

∫
j 1=

K

∑= =
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(16) 

It is worth noting that the reduction of Eqs. (14a,b), (15b), (16) using the modulus of elasticity Er and

of Eq. (15a) using the shear modulus Gr of the reference material, could be achieved using any other

material, considering it as reference material.

The shear deformation coefficients; ay, az are established equating the approximate formula of the

shear strain energy per unit with the exact one given and are obtained as (Pilkey 2002):

(17a)

(17b)

where  is a symbolic vector with iy, iz the unit vectors along y and z axes,

respectively, ∆ is given from 

(18)

υ is the Poisson ratio of the cross section materials, d and h are vectors defined as

(19a)

(19b)

where ψ, φ are stress functions (Sapountzakis and Mokos 2007).

2.2 Stochastic finite element method (SFEM)

In the stochastic finite element method (SFEM), the deterministic finite element formulation is modified

using the perturbation technique or the partial derivative method to incorporate uncertainty in the structural

system. Since the basic variables are stochastic, every quantity computed during the deterministic analysis,

being a function of the basic variables, is also stochastic. Therefore, the efficient way to arrive at the

stochastic response may be to keep account of the stochastic variation of the quantities at every step of the

deterministic analysis in terms of the stochastic variation of the basic variables.

The basic idea is conceptually simple. However, the implementation in actual analysis may not be

simple since it involves the computation and assembly of large matrices of partial derivatives of the

various quantities in terms of the basic variables. Furthermore, devising methodologies to transform the

spatially correlated random fields into the uncorrelated random fields renders the implementation more

It
Ej

Er

----- y
2

z
2

+( )dΩjΩ
 j

 

∫
j 1=

K

∑=

ay
A

Er∆
2

----------- Ej ∇ψ( )j d–( ) ψ∇( )j d–( )⋅ Ωjd
Ω

 j

 

∫
j 1=

K

∑=

az
A

Er∆
2

----------- Ej ∇φ( )j h–( ) φ∇( )j h–( )⋅ Ωjd
Ω

 j

 

∫
j 1=

K

∑=

∇ ( )j iy ∂ ∂y⁄( ) iz ∂ ∂z⁄( )+≡

∆ 2 1 υ+( )IyIz=

d υIy
y

2
z

2
–

2
---------------iy υIyyz( )iz+=

h υIyyz( )iz υIz
z

2
y

2
–

2
---------------⎝ ⎠

⎛ ⎞ iz+=
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complicated. There are two fundamental ways to solve the stochastic problem (i) analytical approach

and (ii) numerical approach. Among analytical approaches, the perturbation method is widely used

because of its simplicity. Numerical method such as Monte Carlo Simulation is generally applicable to

all types’ stochastic problems and is often used to verify the results obtained from analytical methods.

A detailed discussion of these methods is presented below:

2.2.1 Perturbation based stochastic finite element method formulation

The perturbation method is the most widely used technique for analyzing uncertain system. This

method consists of expanding all the random variables of an uncertain system around their respective

mean values via Taylor series and deriving analytical expression for the variation of desired response

quantities such as natural frequencies and mode shapes of a structure due to small variation of those

random variables. The basic idea behind the perturbation method is to express the stiffness and mass

matrices and the responses in terms of Taylor series expansion with respect to the parameters centered

at the mean values. Generally, the Taylor series is expanded only to the first order. That is why this

method is often referred to as first-order perturbation method.

Since the deterministic equations are valid for the Monte-Carlo simulation analysis as well, then the

essential differences are observed in case of perturbation-based analysis. Let us consider a deterministic

equation of motion in the form of

(20)

where Kαβ, Mαβ, Cαβ denote the stiffness matrix, mass matrix and damping matrix,  denote the

acceleration, velocity, displacement, respectively. The stochastic perturbation based approach consists

usually of the up to the second order equations obtained starting from the deterministic ones.

The perturbation stochastic finite element equations describing dynamic response of the single random

variable system for zeroth, first and second order (Kleiber and Hien 1992):

Zeroth-order equation ( 0 terms, one system of N linear simultaneous ordinary differential equations

for 

(21)

First-order equations, rewritten separately for all random variables of the problem ( 1 terms, N systems

of N linear simultaneous ordinary differential equations for 

                (22)

Second-order ( 2 terms, one system of N linear simultaneous ordinary differential equations for

              

Mαβ  q
··
β Cαβ  q

·
β Kαβ  qβ+ + Qa=

q··β q· β qβ, ,

C

qα

0
bl

0
τ;( ) α, 1 2 … N), , ,=

Mαβ

0
bl

0( )q··β
0

bl

0
τ;( ) Cαβ

0
bl

0( )q· β
0

bl

0
τ;( ) Kαβ

0
bl

0( )qβ

0
bl

0
τ;( )+ + Qα

0
bl

0
τ;( )=

C

qα

,ρ
bl

0
τ;( ) ρ, 1 2 … N α, , , , 1 2 … N, , ,= =

Mαβ

0
bl

0( )q··β
,ρ
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0
τ;( ) Cαβ

0
bl

0( )q· β
,ρ
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0
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0
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0( )qβ

,ρ
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0
τ;( )+ + Qα
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0
τ;( )=

Mαβ

,ρ
bl

0
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0
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0
τ;( ) Cαβ

,ρ
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0
( )q· β

0
bl

0
τ;( ) Kαβ

,ρ
bl

0
( )qβ

0
bl

0
τ;( )+ +[ ]–

C

qα

2
bl

0
τ;( ) α, 1 2 … N), , ,=

Mαβ

0
bl

0( )qβ

,ρ
bl

0
τ;( ) Cαβ

0
bl

0( )qβ

,ρ
bl

0
τ;( ) Kαβ

0
bl

0( )qβ

,ρ
bl

0
τ;( )+ + {Qα

,ρσ
bl

0
τ;( )=

2 Mαβ

,σ
bl

0
( )qβ

0
bl

0
τ;( ) Cαβ

,σ
bl

0
( )qβ

σ
bl

0
τ;( ) Kαβ
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0
( )qβ

σ
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0
τ;( )+ +[ ]–
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(23)

(24)

where  is the vector of nodal random variables, qα is the vector of nodal displacement-type variables,

τ is forward time variable, N is the number of nodal random variables.  and  are system

mass matrix, damping matrix and system stiffness matrix, respectively.  and Cov (br, bs) are load

vector, displacement and the covariance matrix of the nodal random variable, respectively. N is the

number of degrees of freedom in the system. (.)0 is zeroth-order quantities, taken at means of random

variables, (.).ρ is first partial derivatives with respect to nodal random variables, (.).ρσ is second partial

derivatives with respect to nodal random variables.

The first two statistical moments for the random fields br(xk), r = 1,2,...,R, are defined as

(25)

(26)

r, s = 1,2..., R

The latter definition can be replaced by

(27)

with

(28)

where, E[br], Cov(br, bs), Var(br), , , p1(br) and p2(br, bs) denote the spatial expectation,

covariance, variance, correlation functions, the coefficients of variation, probability density function

(PDF) and the joint PDF, respectively. R is the random fields, which can represent randomness in the

cross sectional area, length of truss and beam members, thickness of plate and shell elements, elastic

modulus, and mass density of the material, etc.

All the equations, solved consequently for zeroth, first and second order displacements, velocities and

accelerations, make it possible to compute the first two probabilistic moments of the output in the form

of expected values and cross-covariances of the structural response.

2.2.2 Monte carlo method 

The Monte Carlo method is a quite versatile mathematical tool capable of handling situations where

all other methods fail to succeed; in structural dynamics, it has attracted intense attention only recently

following the widespread availability of inexpensive computational systems. This computational availability

has triggered an interest in developing sophisticated and efficient simulation algorithms. Shinozuka

1972 had a pioneering role in introducing the method to the field of structural dynamics. Shinozuka

Mαβ

,ρσ
bl
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0
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0
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used the Monte Carlo Simulation for simulating a random process as the superposition of a large number

of sinusoids having a uniformly distributed random phase angle. Zhang and Ellingwood (1996) used

this method to obtain the effects of random material properties. However, in most of the studies, the

Monte Carlo Simulation was used to verify the results obtained from approximate methods (Stefanou

and Papadrakakis 2004).

The Monte Carlo Simulation generates a set of random values of X according to its probability distribution

function. The set can be written as X = {x1, x2,…, xN}, where N is the number of simulation. For each values

of X, the stiffness and mass matrices are computed. At the end of N simulations, we have a random set of

displacement and stress values  for

Xi. From this finite set of solutions, the expected values of displacement and stress are computed using

the following formulas:

(29)

(30)

3. Numerical examples

On the basis of the analytical and numerical procedures presented in the previous sections, a

FORTRAN program has been written and representative examples have been studied to demonstrate the

efficiency and the range of applications of the developed method. During stochastic analysis, displacements

and sectional forces of the systems are obtained from perturbation and Monte Carlo methods by using

different uncertainties of material characteristics (Elastic modulus). The analysis results obtained from

these two methods are compared with each other. 

For two examples, the elastic modulus was chosen as random variable. Coefficient of variation

(COV) was selected as α = 0.1 for this random variable (kleiber and Hien 1992). The perturbation

based SFEM is very efficient for low material variability. How it was supposed before Kleiber and Hien

1992, Kaminski 2006, higher than 0.1~0.15 coefficients of variation (COV) of input random variables

demand higher order Taylor expansion in equilibrium equations and higher order expansion of the

solution. The respective expectation and correlation function (Kleiber and Hien 1992) for the elastic

modulus Eρ are assumed as follows:

E[Eρ] = 3.0 × 107     λ = 10

where xp, l and λ are ordinates of the element midpoints (n random variable, ρ,σ = 1,2,...,n), structural

member length and decay factor. 

Example 1. A frame system of four spans and five stories consisting of beams and columns that have

composite cross section subjected to earthquake ground motion (Fig. 2) is selected as first application

(Fig. 3) for the generalized perturbation-based stochastic finite element method. The span length of the

composite frame system is l = 40 m and story height is h = 3.0 m. The composite columns (Fig. 3b) and

composite beams (Fig. 3c) are consisting of a concrete part (Ec = 3.0 × 107 kPa, Gc = 1.25 × 107 kPa,

{ qβ{ }1 qβ{ }2 qβ{ }3 … qβ{ }N} σ{ }1 σ{ }2 σ{ }3 … σ{ }N, , , ,{ }, , ,, ,

µ qβ{ }
1

N
---- qβ{ }i

i 1=

N

∑=

µ σ{ }
1

N
---- σ{ }i

i 1=

N

∑=

µ Eρ Eσ,( )
xρ xσ–

λl
-------------------–⎝ ⎠

⎛ ⎞exp=
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ρc = 2,500 kg/m3, υ = 0.20) (reference material) stiffened by a steel one (Es = 2.1 × 108 kPa, Gs = 8.75 ×

107 kPa, ρs = 7,850 kg/m3). The column have a box shaped closed composite cross section as shown in

Fig. 3(b). The cross section properties are computed as AE = AG = 0.2144 m2, Iy = 0.00374 m4, Iz =

0.00113 m4, It = 0.040 m4. The composite beams are formed as a box shaped composite cross section,

with uniform Poisson’s ratio υ = 0.20 and damping ratios ξ = 0.05. The cross section properties is

computed as AE = AG = 0.1618 m2, Iy = 0.00266 m4, Iz = 0.00173 m4, It = 0.0351 m4 (Fig. 3c). The

Fig. 2 Acceleration time history of Kocaeli earthquake (YPT330), 1999

Fig. 3 (a) The dimensions of the composite frame systems in Example 1. (b) The dimensions of column cross-section.
(c) The dimensions of beam cross-section
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shear deformation coefficient for two sections is selected as ay=az=0. It is supposed that the unit mass

of beams is 40.0 kN/m with its self-weight and sum of live and dead load coming from slabs. 

For the dynamic analysis, YPT330 component of Yarimca station records of 1999 Kocaeli Earthquake

(Fig. 2) is utilized as ground motion (peer 2007). This ground motion continued up 35.0 s is applied to

the system in a horizontal direction. The dynamic responses of the composite frame system are

obtained for a time interval of 0.005 s.

The composite frame system is modeled by 155 stochastic finite elements of equal length (155

random variables, ρ, σ = 1,2,...,155; xp are ordinates of the element midpoints). Monte Carlo Simulation

(MCS) method was simulated for 10,000 simulation.

Absolute values of maximum displacements and sectional forces are determined according to

perturbation based stochastic finite element method and Monte Carlo Simulation for composite frame

system and the analysis results compared with each other. 

Fig. 4 presents horizontal displacements along the left border of composite frame system according to

MCS and perturbation based SFE methods. As shown in Fig. 4, the displacement values obtained from

the perturbation method are close to those acquired from MCS method. The minimum absolute

differences between these two methods for horizontal displacement value are about 3.1%, however,

maximum differences are about 3.7%.

Maximum moments in the top joint of columns in every floor for the frame system are plotted in Fig. 5.

The maximum moments occurs in the columns at second and fourth axes for this frame system (Fig. 3). It

is seen from Fig. 5 that values obtained from MCS and perturbation methods are much closer to each

other. While minimum differences between the moments of these two methods are 4.8%, maximum

differences are about 5.1%. 

The last comparison for example 1 is about axial forces obtained from this frame system. Fig. 6

presents maximum axial forces of the columns in every floor for the frame system. Maximum axial

forces occur in the columns at border axes for frame system. Likely to other results, axial forces obtained

from MCS and perturbation method is closer to each other, too. Minimum differences for axial forces

Fig. 4 Horizontal displacement of the frame system along story height
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are about 4.5%, while maximum ones are about 4.7%.

Example 2. A two-dimensional bridge that has three piers and four spans, subjected to earthquake

ground motion (Fig.2), is chosen as second application (Fig. 7) for the generalized perturbation-based

stochastic finite element method. The bridge’s piers and decks are consisting of composite cross section

made from concrete and steel. The bridge’s length l = 90 m and its height is h = 12 m. The composite piers

(Fig. 7b) and composite decks (Fig. 7c) are consisting of a concrete part (Ec = 3.0 × 107  kPa, Gc = 1.25×

107 kPa, ρc = 2,500 kg/m3, υ = 0.20) stiffened by a steel (reference material) one (Es = 2.1×108 kPa,

Gs = 8.75×107 kPa, ρs = 7,850 kg/m3). The piers have a box shaped closed composite cross section as

Fig. 5 Maximum absolute bending moment of the top joint of the column of each story for the frame system

Fig. 6 Maximum axial force of the columns of each story for the frame system
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shown in Fig. 7b. The cross section properties is computed as AE =AG = 0.061 m2, Iy = 0.00187 m4, Iz =

0.00110 m4, It = 0.0034 m4. The composite decks are formed as a box shaped composite cross section,

with uniform Poisson’s ratio υ = 20 and damping ratios ξ = 0.05. The cross section properties are

computed as AE = AG = 0.0652 m2, Iy = 0.00572 m4, Iz = 0.00134 m4, It = 0.0081 m4 (Fig. 7c). The shear

deformation coefficient for two sections is selected as ay = az = 0. In addition, it is supposed that the

unit mass of beams is 110.0 kN/m with its self-weight and sum of live and dead load coming from slabs.

For the dynamic analysis, YPT330 component of Yarýmca station records of 1999 Kocaeli Earthquake

(Fig. 2) is utilized as ground motion (peer 2007). The earthquake motion continued up 35.0 s is applied

to the bridge in a vertically direction. The dynamic responses of the composite bridge are obtained for a

time interval of 0.005 s.

The composite bridge is modeled by 114 stochastic finite elements (114 random variables, ρ,σ = 1,2,...,

114; xρ are ordinates of the element midpoints). Monte Carlo Simulation (MCS) method was simulated

for 10,000 simulation.

Absolute values of maximum vertical displacements and sectional forces are determined according to

perturbation based SFEM and MCS method for this composite bridge system, and the analysis results

compared with each other. 

In Fig. 8 vertical displacements are plotted along the decks of composite bridge system according to

MCS and perturbation methods. As shown in Fig. 8, the displacement values obtained from the

perturbation method are close to those acquired from MCS method. The minimum absolute differences

between these two methods for vertical displacement value are about 0.88%, however, maximum

differences are about 1.06%.

Maximum moments of deck spans along for the bridge system are plotted in Fig. 9. It is seen from

Fig. 9 that values obtained from MCS and perturbation methods are closed to each other. While

minimum differences between the moments of these two methods are 5.9%, maximum differences are

about 6.6%. 

Fig. 7 (a) The dimensions of the bridge in Example 2. (b) The dimension of piers of the bridge. (c) The
dimensions of deck of the bridge.
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The last comparison for example 2 is about shear forces obtained from this bridge system. The

changing of the shear forces of the bridge along the decks is plotted in Fig. 10. Likely to other results,

shear forces obtained from MCS and perturbation method is closer to each other, too. Minimum

differences for axial forces are about 5.8%, while maximum ones are about 6.5%.

If it is mentioned the results obtained from these two examples; for the analysis of this bridge system

(Fig. 7) presented its numerical properties, it needs about 13 seconds for perturbation based stochastic

analysis, however, it needs about 11 hours for MCS analysis with the PC which have Intel Pentium (R)

2.40 GHz CPU and 768 MB RAM. On the other hand, for the analysis of the frame system (Fig. 3), it

needs about 15 seconds for perturbation based stochastic analysis, and, it needs about 15 hours for MCS

analysis.

The responses obtained shows that selected correlation function suitable for these problems for

chosen coefficient of variation (COV) value (α = 0.10). 

It is seen also from the analysis results that dynamic response values for MCS are greater than those

obtained from perturbation based SFEM for chosen bridge system. However, for the frame system,

Fig. 8 Vertical displacements of the bridge along the bridge span

Fig. 9 Maximum absolute bending moment in the first joint of the each element of bridge’s deck
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responses from perturbation based SFEM are higher, except for horizontal displacement.

4. Conclusions

In this paper, the comparison of the perturbation based SFEM and MCS method for dynamic

responses of structural systems made of composite sections subjected to ground motion is performed

with two examples, and some conclusions are drawn for the systems as follows: 

The presented numerical technique is well suited for computer-aided analysis for structural systems

made of composite cross section. It was seen that this technique is very suitable for chosen coefficient

of variation (COV) value (α = 0.10).

At two types of structural systems made of composite sections modeled in this study, perturbation

based SFEM gives close results to MCS method for displacements, moments, axial forces and shear

forces. Therefore, it can be said that perturbation method could be used instead of Monte Carlo

Simulation method.

The dynamic response values obtained by the MCS method are higher than those of the perturbation

based SFEM for chosen bridge system. However, this situation for frame system is on the contrary,

except for horizontal displacements. 

Finally, it should be mentioned that the approach proposed should turn out useful in generating

material data for the efficient SFEM analysis of various composites because of its relatively low

computational cost it should also find applications.
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