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Abstract Landslides are very common natural problems

in the Black Sea Region of Turkey due to the steep

topography, improper use of land cover and adverse cli-

matic conditions for landslides. In the western part of re-

gion, many studies have been carried out especially in the

last decade for landslide susceptibility mapping using dif-

ferent evaluation methods such as deterministic approach,

landslide distribution, qualitative, statistical and distribu-

tion-free analyses. The purpose of this study is to produce

landslide susceptibility maps of a landslide-prone area

(Findikli district, Rize) located at the eastern part of the

Black Sea Region of Turkey by likelihood frequency ratio

(LRM) model and weighted linear combination (WLC)

model and to compare the results obtained. For this pur-

pose, landslide inventory map of the area were prepared for

the years of 1983 and 1995 by detailed field surveys and

aerial-photography studies. Slope angle, slope aspect,

lithology, distance from drainage lines, distance from roads

and the land-cover of the study area are considered as the

landslide-conditioning parameters. The differences be-

tween the susceptibility maps derived by the LRM and the

WLC models are relatively minor when broad-based clas-

sifications are taken into account. However, the WLC map

showed more details but the other map produced by LRM

model produced weak results. The reason for this result is

considered to be the fact that the majority of pixels in the

LRM map have high values than the WLC-derived sus-

ceptibility map. In order to validate the two susceptibility

maps, both of them were compared with the landslide

inventory map. Although the landslides do not exist in the

very high susceptibility class of the both maps, 79% of the

landslides fall into the high and very high susceptibility

zones of the WLC map while this is 49% for the LRM map.

This shows that the WLC model exhibited higher perfor-

mance than the LRM model.

Keywords Landslide � Likelihood frequency ratio �
Multicriteria decision analysis � GIS � Findikli (Turkey)

Introduction

Landslides are dangerous natural hazards that occur sud-

denly and cause considerable damage. Over the last two

decades, many governments and international research

institutes in the world have investigated considerable re-

sources in assessing landslide hazards and in attempting to

construct maps portraying their spatial distribution (Guzetti

et al. 1999).

In Turkey, earthquakes and landslides are foremost and

the second most important natural hazards (Ildır 1995).

Especially the Black Sea Region of Turkey is the most

susceptible area to landsliding. This region exhibits

mountainous topographical features, and is commonly

subjected to heavy precipitation. Because of these adverse

effects, the region is prone to extensive and severe
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landslides (Ercanoglu and Gokceoglu 2002). For these

reasons, in the last decades, several studies on landslide

susceptibility mapping have been carried out in the region.

However, the investigation areas of these studies accu-

mulate in the western part of the Black Sea region (Go-

kceoglu and Aksoy 1996; Suzen and Doyuran 2004a, b;

Yesilnacar and Topal 2005; Ercanoglu and Gokceoglu

2004; Cevik and Topal 2003) except one study (Akgun and

Bulut 2007), and in these studies, several different methods

and techniques for landslide susceptibility mapping have

been proposed and applied. Researchers used quantitative

assessment models such as logistic regression, landslide

information value, multicriteria-decision analysis, neural

networks and fuzzy logic, to produce landslide suscepti-

bility maps in the Black Sea Region.

Throughout the world, it is possible to find many

studies on landslide susceptibility assessment. The basic

concept of landslide susceptibility assessment was first

introduced by Radbruch (1970), Dobrovolny (1971) and

Brabb and Pampeyan (1972) as the spatial distribution of

factors related to the instability processes in order to

determine zones of landslide-prone areas without any

temporal implication. Guzetti et al. (1999) and Chacon

et al. (2006) summarized most of the landslide suscepti-

bility mapping studies. More recently, probabilistic mod-

els have been proposed (Jibson et al. 2000; Lee and Min

2001; Donati and Turrini 2002; Lee et al. 2004a, b; Lee

and Dan 2005; Gokceoglu et al. 2005; Lee and Sambath

2006). Logistic regression model, one of the statistical

models, has also been employed for the purpose of

landslide susceptibility mapping (Atkinson and Massari

1998; Dai and Lee 2001; Ohlmacher and Davis 2003; Lee

2004; Can et al. 2005; Gorsevski et al. 2006). Gokceoglu

et al. (2000), Shou and Wang (2003) and Zhou et al.

(2003) have used the geotechnical and factor of safety

parameter models to investigate the slope failure of the

studied areas. Data mining using fuzzy logic and artificial

neural network models have also been applied by Geo-

graphical information system (GIS) as a new landslide

susceptibility assessment approach (Ercanoglu and Go-

kceoglu 2002; Lee et al. 2003, 2006; Ermini et al. 2005;

Gomez and Kavzoglu 2005).

Landslides in the study area, which occur frequently,

often result in significant damages to people and property

(Bulut et al. 2000). The landslides, which occurred in 1983,

caused considerable damage to study area, Findikli in

Turkey. Due to little effort to assess the landslides trig-

gered by heavy rainfall, damage was extensive. Through

scientific analysis of landslides, we can evaluate landslide-

susceptibility areas, prediction of landslide prone areas,

and thus decrease landslide-damage employing suitable

mitigation measures. To carry out this, landslide suscepti-

bility mapping were carried out and verified in the study

area because landslide susceptibility maps are the first

stage of the landslide hazard mitigation measures. GIS

softwares (Map Info 7.0 and Idrisi Kilimanjaro) were used

as a basic analytical tool for space management and data

manipulation.

Following an extremely heavy rainfall in 1983, 109

landslides were recorded in the east of Findikli, Rize,

northeast Turkey, and the area was selected as a proper

case in which to assess the frequency and distribution of

landslides. For this purpose, detailed landslide inventory

maps of the study area were prepared by extensive field

surveys conducted in the period of 1983 and 1995,

including 109 and 10 landslide locations, respectively.

Landslide-conditioning parameter maps are produced from

Digital Elevation Model (DEM) and from existing thematic

maps such as lithology and land-cover of the study area.

Likelihood ratio and weighted linear combination

(WLC) models were used to prepare the landslide sus-

ceptibility maps of the study area and the results were

compared within the scope of both effectiveness of the

methods used and effectiveness of the environmental

casual parameters governing the landslides.

The study area

The area locates at the East Black Sea Region (Fig. 1)

which is known as the one of the most landslide-prone

areas in Turkey. The western border of the study area starts

from Findikli town, at a ~65-km distance from Rize city

and extends in NE direction towards Guzelyali district. The

study area covers an area of 43 km2. A simplified litho-

logical map of the area is shown in Fig. 2. Upper Creta-

ceous volcanic units, namely Hemsindere Formation

(Korkmaz and Gedik 1988), are the oldest rocks in the

region and cover 24.60 km2 surface area of the study re-

gion. These units are mainly composed of andesite, dacite

and their pyroclastic units. Andesite and its pyroclastic

units cover a great area in the region (16.59 km2), while

dacite and its pyroclastic units cover 8.01 km2. The Upper

Cretaceous volcanics are highly susceptible to landsliding

due to its susceptibility to weathering and most of the

landslides occurred in the area are observed in these

units. Hemsindere Formation is intruded by microgabro–

gabro (0.49 km2) and granodiorite–quartz microdiorite

(0.96 km2) intrusion rocks of Paleocene. Quaternary slope

debris and alluvium are the youngest units in the area and

their areal extents are 11.69 and 5.24 km2, respectively. In

the study area, no major well-developed structural elements

such as faults and folds are observed.

The main streams in the study area are Abu and Sumer

Rivers (Fig. 1). These rivers and their tributaries form

a dentritic drainage pattern due to topographical and
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geological features of the area. Elevations in the area range

between 34 and 550 m, and the highest point in the study

area is Dokzeni Hill. There are also other important hills

such as Tiras, Yumurtaduzu and Lacatopas (Fig. 1). Slope

angles range between 0� and 88� with an average of 35�.

Slope aspects in the area generally trend toward NE–SW

direction. Dense vegetation and extensive tea-plantation

fields cover the lower and gentle slopes, while sparse

vegetation is dominant at steeper slopes and higher eleva-

tions. Findikli is the main settlement area and there are also

many scattered villages throughout the study area. The

climate of the study area is very humid and temperate.

Precipitation is very heavy (Fig. 3) and occurs frequently

in the form of rain and snow throughout the winter.

According to the data obtained from General Directory of

Meteorological Services of Turkey (2006), the annual

mean precipitation at a station located at Findikli town over

the period of 1960–2000 is 2,200 mm (www.me-

teor.gov.tr).

Data

The first stage in all the landslide susceptibility assessment

studies consists in the collecting of existing information

and data for the investigation area (Aleotti and Chowdhury

1999). This stage is accepted to be the most important part

of the landslide hazard mitigation studies (Guzetti et al.

2000; Ercanoglu and Gokceoglu 2004). The reliability and

accuracy of the collected data also affect the success of the

applied method. Therefore, the relation between the land-

slide occurrence and the conditioning parameters employed

has also crucial importance for the landslide susceptibility

mapping.

For landslide susceptibility assessment, several spatial

data controlling the landslide occurrence are necessary,

together with the landslide inventory data. When applying

a method to landslide susceptibility assessment, definition

of the criteria controlling the degrees of susceptibility is

very important. Despite any parameter being important

Fig. 1 Location map of the study area
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with respect to the landslide occurrence for a given area,

the same parameter may not be important for another area

(Ercanoglu and Gokceoglu 2004). That is why, different

parameters can be used and ranked subjectively or objec-

tively to construct a landslide susceptibility map.

In order to produce a detailed and reliable landslide

inventory map, extensive field surveys and observations

were performed in the study area. A total of 109 landslides

were identified and mapped in the area in 1983 and the

mode of failure was determined as rotational slide for all

the slided masses according to the landslide classification

proposed by Varnes (1978). The areal extent of the smallest

observable slide is 200 m2 and the largest is 22,400 m2

approximately. In addition to this data, a second inventory

map was prepared in 1995, and ten additional slides were

mapped in the study area. These landslides were also

Fig. 2 Simplified lithological

map of the study area (Bulut

et al. 1995)

Fig. 3 Annual mean precipitation distribution map of Turkey between 1960 and 2000 years (http://www.meteor.gov.tr/2006/zirai/zirai-

calismalar)
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classified as rotational slides according to Varnes (1978).

All the landslides mapped are presented in Fig. 4.

In the study, six parameters were considered during the

landslide susceptibility zoning of the study area (Table 1).

These parameters can be divided into three categories such

as geological, topographical and environmental condition-

ing parameters. The working scale was chosen as 1:25,000.

Since the positional accuracy needed for 1:25,000 scale

maps must be ±12.5 (USGS 1993), the pixel size of land-

slide inventory and all parameter maps was 25 m. The

study area includes 689.525 pixels and the landslides in-

clude 5,428 pixels.

Since various lithological units have different suscepti-

bilities to active geomorphologic processes like landslides,

lithology plays an important role on the landslide occur-

rence (Carrara et al. 1991; Anbalagan 1992; Pachauri et al.

1998; Dai et al. 2001). Therefore, lithology was considered

as the geological parameter in this study.

Many of the topographical parameters such as slope

gradient, slope aspect, drainage network, etc., are com-

monly used in the literature in different works (Pachauri

et al. 1998; Guzetti et al. 1999; Dai and Lee 2002; Suzen

and Doyuran 2004a, b; Ercanoglu and Gokceoglu 2004). In

this study, slope gradient, slope aspect and distance from

drainage path parameters were considered as topographical

parameters in the landslide susceptibility analysis and were

constructed by using Idrisi Kilimanjaro GIS and image

processing package (Eastman 2003). The elevation (Z)

attribute-bearing vector data such as slope gradient and

slope aspect maps were calculated using the DEM of the

study area, which was produced by triangulation irregular

networks (TIN) interpolation method. On the other hand, if

the vector data such as drainage and road vectors have no

elevation (Z) attributes, which are quantified by presence or

absence of the spatial object, a non-interpolative method

should have to be applied (Bonham-Carter 1996). This non-

interpolative method is either the density (number of line/

point elements of fixed length in a fixed area) of the object

within a specified area, or the nearest distance between the

pixels and that object (Suzen and Doyuran 2004b). For this

reason, distance from drainage data was derived from the

1:25,000 scale topographical vector map and the aerial

orthogonal distance between the pixels and drainage lines

was calculated. Since there is no consensus in literature

about the distances to drainage classes, the researchers have

used different distances with respect to the closeness of the

topographical element (Van Westen and Bonilla 1990;

Anbalagan 1992; Pachauri and Pant 1992; Donati and

Turrini 2002, Ercanoglu and Gokceoglu 2004; Suzen and

Doyuran 2004a, b; Lee 2005; Akgun and Bulut 2007). In

this study, the distances of 0, 50, 100, 150, 200 and higher

than 200 m, to the drainage path are considered.

Land-cover and road distance were considered as the

environmental conditioning parameters. Land-cover map

(Fig. 5) was initially prepared by field studies, and then

converted to digital format by digitizing the map produced

in the field. Distance to road map was produced using the

same procedure that was carried out to create the distance

from drainage map and the distances of 0, 50, 100, 150,

200 and longer than 200 m, to the road were considered.

Fig. 4 The landslide inventory

map of the study area, prepared

in 1983 and 1995 by field

observations
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Methodology

In literature, there are numerous methods to assess the

probability of landsliding. Generally, these methods can be

sub-divided into two groups as statistical and geomorpho-

logic (based on expert knowledge and experience) ap-

proaches (Soeters and van Westen 1996; Suzen and

Doyuran 2004b).

Among the statistical methods, two important groups

arose in the literature, bivariate and multivariate methods.

In bivariate statistical method, each parameter map con-

ditioning to landslide is overlaid with the landslide inven-

tory map, and weighting values based on landslide

densities are calculated for each parameter class. In order

to calculate the weight values, there are many methods

such as landslide susceptibility (Brabb 1984; Suzen and

Doyuran 2004b), information value (Kobashi and Suzuki

1988), weights of evidence (Bonham-Carter 1996; Lee and

Sambath 2006) and statistical index (van Westen 1997)

methods. In conventional multivariate statistical methods

such as multiple regression and discriminant analysis, the

weights of parameters governing landslide occurrence

indicate the relative contribution of each of these param-

eters to the degree of hazard within a given area. With the

geomorphologic approaches, expert opinions are used to

predict landslide susceptibility using data on conditioning

parameters to landsliding. They are based on the assump-

tion that the relationships between landslide susceptibility

and the conditioning parameters to landsliding are known

and are specified in the models (Dai et al. 2001). However,

there are some limitations on these approaches. First is that

long-term information on the landslides and their casual

parameters for the same site or for sites with similar

environmental conditions are essential. The second is the

subjectivity of weightings and ratings of the variables.

In this study, a statistical method (likelihood-ratio

model) and a multicriteria decision making approach

(WLC model) were used and compared with respect to

their accuracy and validity in classification of susceptibility

classes. There are some differences between these models.

Table 1 Data layer of the study

area
Classification Sub-classification GIS data type Scale

Geological hazard Landslide Polygon vector 1:25,000

Damageable objects Road Line vector 1:25,000

Basic map Topographical map Line vector 1:25,000

Geological map Polygon vector 1:25,000

Land-cover map Polygon vector 1:25,000

Hydrologic data Drainage path Line vector 1:25,000

Fig. 5 Land-cover map of the

study area
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The most important distinction between the models used is

that the likelihood ratio model (LRM) is based on bivariate

statistics and the WLC model is based on expert knowl-

edge. The ratio values obtained from landslide-condition-

ing parameters using LRM can be used as weight values for

each of the parameters considered and using these weight

values can be assigned to relevant parameters to produce a

landslide susceptibility map (Lee and Min 2001). However,

the weight values for the same purpose can be obtained

using multicriteria decision model such as analytical hier-

archy process (AHP) that is so-called a semi-quantitative

method (Ayalew et al. 2004) and applied using subjective

judgments with some mathematical processes. Although

there are some discrepancies about the method’s mean-

ingfulness of responses to the underlying questions, it has

been tested theoretically and empirically for a variety of

decision applications, including spatial decision making

and landslide susceptibility mapping (Siddiqui et al. 1996;

Malczewski 1999; Barredo et al. 2000; Ayalew et al. 2005;

Komac 2006; Akgun and Bulut 2007).

Likelihood ratio model

Likelihood ratio model is based on the observed relation-

ships between distribution of landslides and each condi-

tioning parameter of landslide occurrence, to exhibit the

correlation between landslide locations and the parameters

controlling landslide occurrence in the study area (Lee

2005). The spatial relationship between landslide location

and each parameter’s conditioning landslide occurrence

were obtained using the LRM. In this model, the ratio is

that of the area where landslide occurred, to the total area,

so that a value of 1 is an average value. If the value is >1, it

means percentage of the landslide is higher than the area

and refers to a higher correlation, whereas the values lower

than 1 means lower correlation.

Relationship between landslides and topography

The slope gradient is a basic topographical feature for

landslide susceptibility mapping. Gentle slopes are ex-

pected to have a low frequency for shallow-seated land-

slides due to the generally lower shear stresses associated

with low gradients. At a slope of 10� or less, the likelihood

ratio is 1.05 (Table 2). This value indicates a moderate to

high probability of a landslide occurring. From 10� to 20�,

the ratio is lower than 1, indicating low probability. If the

slope angle is between 20� and 30�, a landslide may occur

and the ratio is 1.19 indicating a high probability. The

remained slope angles, higher than 30�, also exhibit low

probability relatively because their ratio values are lower

than 1. The reason for this circumstance is that the resistant

lithologic units exist in the steep slopes and they are not

covered by highly and completely weathered lithologic

units, which are susceptible to landsliding.

In the case of aspect, landslides were most common on

from southwest to west-facing slopes. Hence, hill slopes

facing from the southwest to west are highly susceptible to

landsliding. The slopes aspecting from northeast to east

have also high susceptibility to landsliding but they are

relatively less susceptible than the southwest-west slopes.

The reason for this situation depends on both the geological

and topographical features because the southwest to west

facing hill slopes are common on completely weathered

dacite, andesite and pyroclastic rocks, whereas the north-

east to east facing hill slopes are covered commonly by

slope debris. In addition to this, the southwest to west-

facing hill slopes have 20 to 30� slope gradients, whereas

the northeast to east slopes have 10� to 20� slopes. The

frequency of landslides was lowest on east-southeast facing

hill slopes (Table 2).

Relationship between landslide and lithology

With respect to relationship between landslides and

lithology, the landslide-occurrence value is the highest in

the areas where dacite, andesite and their pyroclastic units

are completely weathered and the slope gradients differ

from 20 to 30�. The andesite and its pyroclastic rocks,

which are completely weathered, are also susceptible to

landsliding than the others in the study area because the

slope gradient in these units ranges between 10� and 20�.

This situation depends on the presence of fracture density

on dacite, andesite and pyroclastic rocks. The landslide-

occurrence values are the lowest in granodiorite and quartz

microdiorite (Table 2). Additionally, the probability of

landslide is lower in slopes formed by debris material

covering a considerable area in the study district. Since the

slope gradient is equal to zero in alluvium, no landslide

susceptibility in this unit is expected (Table 2).

Relationship between landslide and land-cover

The landslide occurrence value is higher in settlement and

agricultural areas such as tea plantation fields and lower in

sparsely vegetated areas (Table 2). Since the topography in

the area is steep and there is no proper enough flat mor-

phology for agriculture and settlement, inclined and

mountainous areas are needed to use for these purposes.

However, the reasons of high landslide probability in these

areas are human activities such as cultivation of the hill

slopes for agricultural purposes and slope excavation for

both road cutting and settlement foundations (Fig. 6).
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Relationship between landslide and road distance

Since improper excavations of the slopes were carried out

for road cutting to connect the tea plantations and houses in

the study area, landslides occurred mainly in the areas

close to the roads. Therefore, proximity to a road can be

accepted as one of the most influencing parameters for

landsliding in the study area. The closer the road, the

greater is the landslide probability (Table 2). At a distance

of <50 m, the ratio is 1.45, showing a high probability of a

landslide. The ratio is lower than 1 at a distance >150 m

and this indicates a low probability.

Relationship between landslide and drainage distance

In order to assess the influence of drainage on landslide

occurrence, a statistical analysis was carried out. For this

purpose, the distance to drainage was identified by buf-

Table 2 Likelihood ratio values of the landslide-conditioning parameters

Parameter Class Pixels with

landslide

Landslide

densitya (%)

Numbers

of pixels in

domain

Percentage of

domainb (%)

Likelihood

ratioc

Slope gradient 0–10 1,025 18.88 124,261 18.02 1.05

10–20 1,901 35.02 267,775 38.83 0.90

20–30 2,053 37.82 219,276 31.80 1.19

30–40 399 7.35 64,470 9.35 0.79

40–50 50 0.92 7,075 1.03 0.90

>50 0 0.00 6,668 0.97 0.00

Slope aspect Flat 0 0.00 4,718 0.68 0.00

0–45 761 14.02 97,573 14.15 0.99

45–90 423 7.79 52,358 7.59 1.03

90–135 219 4.03 48,267 7.00 0.58

135–180 476 8.77 76,231 11.06 0.79

180–225 1,087 20.03 139,467 20.23 0.99

225–270 1,216 22.40 92,657 13.44 1.67

270–315 574 10.57 78,764 11.42 0.93

315–359 672 12.38 99,490 14.43 0.86

Lithology Slope debris 815 15.02 187,257 27.16 0.55

Alluvium 0 0 84,915 12.31 0.00

Microgabro–Gabro 33 0.61 7,925 1.15 0.53

Granodiorite–quartz microdiorite 17 0.31 15,497 2.25 0.14

Andesite and pyroclast 2,598 47.89 265,717 38.54 1.24

Dacite and pyroclast 1,962 36.17 128,214 18.60 1.95

Land-cover Dense vegetation 0 0 22,271 3.39 0

Sparse vegetation 2,780 51.22 359,310 54.66 0.94

Settlement and agriculture 2,648 48.78 275,789 41.95 1.16

Distance from road (m) 0–50 1,771 32.63 154,683 22.43 1.45

50–100 1,337 24.63 121,868 17.67 1.39

100–150 1,034 19.05 90,246 13.09 1.46

150–200 427 7.87 60,089 8.71 0.90

>200 859 15.83 262,639 38.09 0.42

Distance from drainage (m) 0–50 1,069 19.69 175,088 25.39 0.78

50–100 1,091 20.10 144,356 20.94 0.96

100–150 828 15.25 116,491 16.89 0.90

150–200 1,041 19.18 86,156 12.49 1.53

>200 1,399 25.77 167,434 24.28 1.06

a Ratio of landslides occurred
b Ratio of landslides not occurred
c Ratio of landslides occurred divided by ratio of landslides not occurred
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fering. In the case of the relationship between landslide

occurrence and distance from drainage, as the distance

from drainage increases, the landslide occurrence proba-

bility increases (Table 2). At a distance of higher than

150 m, the ratio was >1, showing a high probability of

landslide occurrence and at distances <150 m, the ratio was

lower than 1, indicating a low probability. In general, this

is contrary to what is expected. The landslides occurred

predominantly on the slope faces generally 150 and 200 m

away from the drainage lines. This is considered to be due

to the terrain modification caused by undercutting of the

slopes in the study area.

Susceptibility mapping by likelihood ratio model

In order to calculate the likelihood ratio, the area ratio for

landslide occurrence was determined for the class of each

parameter contributing to landslide occurrence. For this

purpose, the landslide inventory map, produced in 1983,

was overlaid with thematic layers, and an area ratio for the

class of each parameter to the total area was calculated.

Therefore, likelihood ratios (a/b) for the class of each

parameter were calculated by dividing the landslide

occurrence ratio (a) by the area ratio (b). Then, the like-

lihood ratios of each parameter’s class were summed and

the total values of the likelihood ratios obtained were

assigned to each relevant parameter map as a weight value.

The parameter maps weighted were combined to determine

the landslide susceptibility index (LSI), as presented in

Eq. 1.

LSI ¼Wr1 þWr2 þ . . . Wrn; ð1Þ

where, Wr is the parameter map weighted.

The higher the LSI value, the higher the landslide sus-

ceptibility whereas lower value means a lower suscepti-

bility of landslide. The calculated likelihood ratios of each

parameter’s classes are shown in Table 2. Using these

likelihood ratios, a landslide susceptibility map (Fig. 7)

was obtained by the LSI map. Since the LSI map obtained

has a continuous scale of numerical values, a necessity of

dividing these values into susceptibility classes has ap-

peared. For this purpose, there are some mathematical

methods proposed by Scott (1979) and Friedman and Di-

aconis (1981), which was based on the optimum bin width

classification of the histogram. According to Suzen and

Doyuran (2004a), both the methods cited are ineffective to

multimodel distributions, and they proposed a new method

based on percentile divisions of seed cells to classify the

continuous data sets into categories. Ayalew et al. (2004)

took into consideration four systems of classifier that use

the natural breaks, quantiles, equal intervals and standard

deviation to choose the best method. The quantile-based

classification system takes into consideration widely

Fig. 6 A general view showing the relationship between the hill slopes and land-cover in the study area
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different values into the same class, the equal intervals

emphasizes one class of susceptibility relative to others and

the natural breaks set the boundaries where relatively big

jumps exist in data values, they found the standard devia-

tion method as the best method, as it uses the mean value of

the data obtained to create the classbreaks. The standard

deviation classifier is also proposed in case the histogram

of data values exhibits a normal distribution (Suzen and

Doyuran 2004a). Therefore, the standard deviation classi-

fier was used as well because the data values in the LSI

map obtained using the LRM show a normal distribution

(Fig. 8).

According to this susceptibility map, 2.96% of the total

area is found to be very low susceptible. Low, moderate

and high susceptible zones constitute 31.09, 39.74 and

23.3% of the area, respectively. The very high susceptible

area is 2.88% of the total study area.

Weighted linear combination model

Weighted linear combination is likely the best known and

commonly used multicriteria-GIS method (Eastman 1999;

Jiang and Eastman 2000; Sener et al. 2006). WLC is a

method in which triggered parameters affecting a landslide

can be combined by applying weights. In this method, a

primary issue is to assign weights to each parameter sep-

arately. There are many techniques such as the statistical

index method (Wi) (Van Westen 1997), weighting

parameter (WF) (Cevik and Topal 2003; Oztekin and Topal

2005) and AHP (Saaty 1980; Saaty and Vargas 2001;

Ayalew et al. 2004, 2005; Sener et al. 2006) to find

weights. In this regard, the AHP, a theory for dealing with

complex technological, economical and socio-political

problems, is an appropriate method for deriving the weight

assigned to each parameter (Saaty 1980).

Basically, AHP is a multiobjective, multicriteria deci-

sion making approach that employs a pair-wise comparison

procedure to arrive at a scale of preference among a set of

alternatives (Malczewski 1999). Specifically, the weights

are determined by normalizing the eigenvector associated

with the maximum eigenvalue of the (reciprocal) ratio

matrix. In this method, the pair-wise matrix is used and

ranking of all parameters is made by a continuous scale

ranging from 1/9 to 9 (Table 3). When the parameter on the

vertical axis is more important than the parameter on the

horizontal axis, this value varies between 1 and 9. Contrary

to this, the value varies between the reciprocals 1/2 and

1/9.Weight values are calculated by taking the main

eigenvector of the matrix (Malczewski 1999). In AHP, the

consistency utilized in constructing a matrix is checked by

a consistency ratio (CR). CR is used to show the proba-

bility that the matrix judgements were randomly generated

(Saaty 1980).

CR ¼ CI

RI
; ð2Þ

where RI is the average of resulting consistency index

depending on the order of the matrix given by Saaty (1980)

and CI is the consistency index and can be expressed as

Fig. 7 Landslide susceptibility

map produced by the likelihood

ratio model
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CI ¼ kmax � nð Þ
n� 1ð Þ ; ð3Þ

where kmax is the largest or principal eigenvalue of the

matrix and can be easily calculated from the matrix, n is the

order of the matrix.

In order to be acceptable of the computed weights, the

consistency ratio must be <0.1 (Malczewski 1999; Saaty

2000). A consistency ratio above 0.1 requires revisions of

the judgements in the matrix because of an inconsistent

treatment of particular parameter ratings.

Susceptibility mapping by weighted linear combination

model

In order to produce a landslide susceptibility map using

WLC model, initially, the parameter weights which are rule

based in the ratings giving to each class of a parameter on

the basis of a certain criterion were determined using the

AHP method. In order to realize this stage, a pair-wise

comparison matrix with score given in Table 4 was con-

structed. The appropriate scores used in this study were

chosen based on the detailed field observations, and using

these observations, a criterion was constituted. This crite-

rion is the landslide density, a ratio between the area af-

fected by landslide pixels on a class of a certain parameter

and the total area of that class, changed into percentage.

These landslide density percentages used were also calcu-

lated for the LRM, therefore they are given in Table 2.

Using six parameters, the comparison matrix was con-

structed. The diagonal boxes of a pair-wise comparison

matrix always take a value of 1. The boxes in the upper and

lower halves are symmetrical with one another and the

corresponding values are reciprocal with each other. When

the matrix is generated, the weights will be gained using

the parameter layers as input. Then, the weights are taken

into account as the average of all possible ways of com-

paring the casual parameters (Malczewski 1999; Ayalew

and Yamagishi 2005).

In this study, the weight value of the land-cover is the

highest. The lithology, slope gradients, road distance,

drainage distance and slope aspect are arranged in order of

the their weights (Table 4).

The consistency ratio is found to be 0.05 and this value

expresses the proper degree of consistency ratio utilized to

produce the comparison matrix because it is <0.1. In order

to produce a landslide susceptibility map by WLC model,

the weights corresponding to parameters were multiplied

by the relevant parameter maps and then, all the weighted

parameter maps were overlaid. The flow chart of the

method is presented in Fig. 9. In this way, an index map

showing the spatial distribution of the landslide suscepti-

bility was obtained. To provide visual interpretation, the

produced susceptibility index map was divided into equal

areas. Thus, the landslide susceptibility classes were

clearly identified. Based on this method, five susceptibility

classes were distinguished such as very low, low, moder-

ate, high and very high (Fig. 10). According to this sus-

ceptibility map, 0.71% of the study area is very low

susceptible and the low, moderate and high susceptible

zones form 26.91, 14.81 and 42.15% of the study area,

respectively. About 15.14% of the total area is estimated to

be very high susceptible.

Comparision of the results

Two susceptibility maps were produced using the LRM and

WLC model. Looking at the both maps obtained, some

similarities and also differences are perceived. In order to

make a comparison between the two maps, two different

comparison methods were employed. They are basic linear

correlation and cross-correlation methods. The basic linear

correlation process was carried out using statistical pack-

age, Statistica 6.0, and the cross-correlation was completed

Fig. 8 Relative distribution of the susceptibility classes produced by

two susceptibility assessment model

Table 3 Scale of preference between the parameters in AHP (Saaty

2000)

Scale Degree of preferences

1 Equally

3 Moderately

5 Strongly

7 Very Strongly

9 Extremely

2, 4, 6, 8 Intermediate

Reciprocals Opposites
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using Idrisi Kilimanjaro software. The purpose of the two

comparison methods applied was to exhibit the similarities

between the two landslide susceptibility maps obtained.

In order to carry out the basic linear correlation, both

maps were converted to ASCII file and then imported into

the statistical package. With the basic linear correlation

process, a correlation coefficent (r) was found to be 0.64

that is significant at 0.95 confidence level. This value shows

a considerable similarity between both susceptibility maps.

In addition to this process, cross-correlation was applied to

both the maps. In this method, two operations were per-

formed. The first was image cross-tabulation in which the

categories of one image are compared with those of a sec-

ond image and a tabulation is kept of the number of cells in

each combination (Eastman 2003). With this operation,

some measures of association between the images were

obtained. The first of these measures was Cramer’s V, a

correlation coefficient that ranges from 0.0 indicating no

correlation with 1.0 indicating perfect correlation (Ott et al.

1983). In addition to this, a chi-square value was also

determined so that the significance of Cramer’s V could be

tested. The results showing the cross-correlation between

the two landslide susceptibility maps are given in Table 5.

The second measure obtained from cross-correlation was

Kappa index value and it is shown in Table 5. The Kappa

index (also called Khat or the Kappa Index of Agreement,

KIA) is used if the two images have completely the same

number of classes (Carstensen 1987) and ranges from 0.0 to

1.0 with the same interpretation. It only has meaning if the

categories on the two maps depict the same kind of data

with the same data classes (Eastman 2003). Because of

these reasons, the Kappa index value was also considered to

Table 4 The pair-wise comparison matrix, parameter weights and consistency ratio value

Parameter Slope aspect Drainage distance Lithology Land-cover Slope gradient Road distance Weights

Slope aspect 1 0.0466

Drainage distance 2 1 0.0668

Lithology 5 3 1 0.2501

Land-cover 5 5 2 1 0.3668

Slope gradient 3 3 1/2 1/2 1 0.1859

Road distance 3 2 1/4 1/6 1/4 1 0.0838

Consistency ratio: 0.05 < 0.1 (acceptable)

Fig. 9 Flow chart of the used

model
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be an evidence to show the similarity between the two

susceptibility maps. At the end of the cross-correlation

process, the Cramer’s V and overall KIA values were

determined to be 0.4185 and 0.2784, respectively. The

Cramer’s V value shows a favorable similarity between the

both susceptibility maps, whereas the overall KIA value

indicates less similarity. However, on making a close

inspection of the KIA values for each of the susceptibility

classes, very low, low, moderate, high and very high classes

having 0.55, 0.42, 0.17, 0.25 and 0.54 KIA values indicate

very low, low and very high susceptibility classes of both

maps that are similar, but there is an evident dissimilarity

between the low and moderate susceptibility classes, and

this situation decreases the overall KIA value.

As shown in Fig. 11, the histogram of the susceptibility

map constructed by LRM exhibits a near normal distribu-

tion after re-classification of the likelihood ratio index map

into five classes of susceptibility, whereas the histogram

of the susceptibility map produced by WLC model is

negatively skewed showing that high and very high sus-

ceptibility classes constitute more areas in the WLC map

than LRM map. The reason for this situation may be based on

the theoretical natures of the approaches employed herein.

Due to the subjectivity in constructing the pair-wise com-

parison matrix, the result obtained by WLC model at a

specific place is more or less dominated by the contribution

of a single or a few numbers of landslide-conditioning

parameters. Contrary to this, the likelihood ratio at any points

perceives the casual parameters to landsliding that maximize

the likelihood of the observed sample values. Therefore, it

is concluded that the more the method is objectively con-

structed, the more the accurate results can be obtained.

Verification of the susceptibility maps

Three basic methods can be applied to obtain an indepen-

dent sample of landslide in order to verify a landslide

Fig. 10 Landslide

susceptibility map produced by

the weighted linear combination

model

Table 5 Cross-correlation of the WLC (columns) against LRM (rows) landslide susceptibility maps and the statistical data obtained

Susceptibility classes 1 2 3 4 5 Total KIA Statistical data

1 0.0035 0.0131 0.0026 0.0000 0.0000 0.0192 0.5501 Cramer’s V = 0.4185

2 0.0024 0.0631 0.0932 0.0236 0.0000 0.1824 0.4201 v2 = 483,162.31

3 0.0003 0.0434 0.1567 0.1973 0.0025 0.4002 0.1734

4 0.0000 0.0005 0.0582 0.2550 0.0206 0.3342 0.2506

5 0.0000 0.0000 0.0001 0.0330 0.0309 0.0640 0.5435

Total 0.0063 0.1201 0.3108 0.5089 0.0540 1.0000 Overall j = 0.2784
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susceptibility map as applied by Remondo et al. (2003). In

the first method, the original landslide inventory is ran-

domly split into two groups, one for the susceptibility

analysis and one for verification process. In the second

method, the susceptibility analysis is carried out in a part of

the study area and the susceptibility map thus obtained is

tested in another part with different landslides. In the last

method, the susceptibility analysis employed using land-

slides generated in a certain period and verification is

carried out by means of landslides that occurred in a dif-

ferent period. The latter is accepted as the most reliable

method to perform the verification process of the suscep-

tibility map obtained (Irigaray et al. 1999, 2006; Remondo

et al. 2003). Therefore, the last method proposed was ap-

plied to carry out the verification process in this study.

In order to verify both landslide susceptibility maps, the

maps were matched with the landslide locations observed

and mapped both in 1983 and 1995 in the study area. For

this purpose, the two maps were separately overlaid with

the landslide inventory map and the landslide occurrence

percentage in all susceptibility classes for both maps were

determined. Using this approach, landslide occurrence

percentages falling to all the susceptibility classes of each

maps were determined. The verification result is presented

as a graph in Fig. 12. In this graph, it is clearly seen that no

landslide fall into the very low susceptibility classes in both

the LRM and WLC maps. In the LRM map, 16.78, 33.30,

47.41 and 1.97% of the recent landslides fall into the low,

moderate, high and very high susceptibility classes,

respectively, 2.54, 18.21, 68.09 and 11.14% recent land-

slides fall into the low, moderate, high and very high

susceptibility classes in the WLC map. In this regard, it is

easy to say that many of landslide zones in the study area

are more compatible with the susceptibility classes in the

WLC map than the LRM map.

Conclusions and discussion

In this study, two landslide susceptibility mapping models,

the LRM and the WLC model, were applied to Findikli

district, Rize, Northeast Turkey, as the study area, using a

GIS for estimating the susceptible areas of the study area.

The produced susceptibility maps were compared with the

landslide zone map of the area and the effectiveness of the

used methods was tested.

A landslide inventory map of the study area was com-

piled in 1983 by detailed data from field surveys and aerial-

photography studies. In the study area, a total of 109

landslides were identified, and the common failure mode

was determined as rotational slides. In addition to this map,

a second inventory map was prepared in 1995 and ten

additional landslides in type of rotational slide were re-

corded. The main triggering parameter for the landslides in

the area is heavy rainfall since the area receives heavy

precipitation frequently.

Two statistical methods are used for landslide suscep-

tibility mapping. The first one is LRM, which uses the

frequency relations between the occurred landslides and

the parameters conditioning landslide occurrence in the

area. The second model is WLC which is a well-known

multicriteria decision analysis model. The two landslide

susceptibility maps are obtained using the LRM and WLC

models, and five susceptibility classes are distinguished in

the two maps. According to both the maps, the northern

and eastern parts of the study area are more prone to

landslide occurrence. In the WLC map, high susceptibility

class covers widespread areas than in the LRM map. The

least susceptible zones of the study area are in the central

parts, and these areas are very similar in both the suscep-

tibility maps. Although the two maps show a similarity,

some distinctions are also observed. These distinctions

depend on the methodological approach used in the two

models. The LRM map results are inferred from the actual

landslide data, whereas the WLC model is based on the

expert judgment to choose the effectiveness of the

parameters for landslide susceptibility mapping. However,

Fig. 11 Relative distribution of the susceptibility classes produced

by two susceptibility assessment models (1: very low, 2: low, 3:

moderate, 4: high and 5: very high)

Fig. 12 A histogram exhibiting the percentage of the recent landslide

zones falling into the susceptibility classes of the LRM and WLC

susceptibility maps
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much of the WLC model uses the subjective decisions; the

parameters considered are analysed by reliable mathemat-

ical approach such as AHP.

Up to recent years, there has been no attempt to the

preparation of the landslide inventory maps in Turkey.

However, especially in the last decade, many researchers

and governmental research institutions such as the General

Directorate of Mineral Resources have spent considerable

efforts to prepare a national landslide inventory database.

For this purpose, the Turkey Landslide Inventory Project

has been initiated in 1997 by the General Directorate of

Mineral Resources and it will be finished by the next year

(Duman et al. 2005). With the help of this project, prepa-

ration of the landslide susceptibility maps in Turkey by the

previously mentioned methods will be made easier.

The obtained landslide susceptibility maps are expected

to be utilized by the local governmental authority because

the data will help them in their decision-making and policy

planning efforts in the near future.
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