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Abstract. Well-posedness of the inverse problem for the elliptic differential equa-

tion with Dirichlet condition is investigated. A finite difference method for the

approximate solution of the inverse problem is applied. Stability and coercive sta-

bility estimates for the solution of the first and second order of accuracy difference

schemes are obtained. In applications, the inverse problem for the multidimensional

elliptic equation is studied. The theoretical statements are supported by the numer-

ical example in a two dimensional case of elliptic equation.
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1 Introduction

We consider the inverse problem of finding a function u and a element p for the elliptic equation−utt(t) +Au(t) = f(t) + p, 0 < t < T,

u(0) = φ, u(T ) = ψ, u(λ) = ξ, 0 < λ < T

(1.1)

in an arbitrary Hilbert space H with the self-adjoint positive definite operator A. Here, φ,ψ,

and ξ are given elements of H, λ is known number.

It is clear that for finding a solution u(t) of problem (1.1) it is useful to apply the substitution

u(t) = v(t) +A−1p, (1.2)
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where v(t) is the solution of the following nonlocal boundary value problem

−vtt(t) +Av(t) = f(t), 0 < t < T,

v(0)− v(λ) = φ− ξ, v(T )− v(λ) = ψ − ξ,

(1.3)

and p is the unknown element defined by formulas

p = Aφ−Av(0) or p = Aψ −Av(T ). (1.4)

So, we consider the algorithm which includes three stages for solving problem (1.1). In the first

stage, we consider nonlocal boundary value problem (1.3) and we will obtain v(t).

In the second stage, we will put t = 0 or t = T , and find v(0) or v(T ). Then, using (1.4),

we will obtain p. In the third stage, we will use formula (1.2) for obtaining the solution u(t) of

problem (1.1). Moreover, we have one more possibility. Actually, we can obtain u(t) by formula

u(t) = v(t) + w(t), where w(t) is the solution of the boundary value problem

−wtt(t) +Aw(t) = p, 0 < t < T,

w(0) = ξ − v(λ), w(T ) = ξ − v(λ).

(1.5)

Inverse problems play an important role on mathematical modeling of real processes (see,

for example [1–3] and the references therein). Well-posedness of inverse problems for partial

differential equations have been studied extensively by many researchers (see, e.g. [4–16]). Var-

ious inverse problems for elliptic type equations can be reduced to the nonlocal boundary-value

problems. Methods of the solution of nonlocal boundary values problems of various differential

and difference equations of elliptic type have been investigated extensively by many researchers

(see [17–26] and the references therein).

In [5], existence and uniqueness theorems for problem (1.1) in a Banach space were presented.

However, stability estimates for solution of (1.1) were not established. In the present paper,

we establish stability and coercive stability estimates for solution of inverse problem (1.1).

Moreover, the first and second order of accuracy difference schemes for the approximate solution

of problem (1.1) are presented. Stability and coercive stability estimates for the solution of these

difference schemes are established. In applications, the inverse problem for the multidimensional
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elliptic equation with Dirichlet condition

−utt(t, x)−
n∑

r=1
(ar(x)uxr )xr = f(t, x) + p(x),

x = (x1, · · · , xn) ∈ Ω, 0 < t < T,

u(0, x) = φ(x), u(T, x) = ψ(x), u(λ, x) = ξ(x), x ∈ Ω,

u(t, x) = 0, x ∈ S, 0 ≤ t ≤ T

(1.6)

is studied. Here, ar(x) (x ∈ Ω), φ(x), ψ(x), ξ(x) (x ∈ Ω), and f(t, x) (t ∈ (0, T ), x ∈ Ω) are

given smooth functions and ar(x) ≥ a > 0 (x ∈ Ω), and Ω = (0, ℓ)× · · ·× (0, ℓ) is the open cube

in the n-dimensional Euclidean space with boundary S, Ω = Ω ∪ S.

In [16] inverse problem for the multidimensional elliptic equation with Neumann condition

is investigated. In the present work, the first and second order of accuracy in t and second

order of accuracy in space variables for the approximate solution of problem (1.6) are presented.

The stability and coercive stability estimates for the solution of these difference schemes are

obtained. The modified Gauss elimination method is used for solving these difference schemes.

2 Well-posedness of problem (1.1) and its applications

Theorem 2.1 Assume that A is a self-adjoint positive definite operator, φ,ψ, ξ ∈ D(A) and

f(t) ∈ Cα,α
0T (H) (0 < α < 1) . Then, for the solutions (u(t), p) of problem (1.1) the following

stability estimates hold:

∥u∥C(H) ≤M
[
∥φ∥H + ∥ψ∥H + ∥ξ∥H + ∥f∥C(H)

]
, (2.1)

∥∥A−1p
∥∥
H

≤M
[
∥φ∥H + ∥ψ∥H + ∥ξ∥H + ∥f∥C(H)

]
, (2.2)

∥p∥H ≤M

[
∥Aφ∥H + ∥Aψ∥H + ∥Aξ∥H +

1

α(1− α)
∥f∥

Cα,α
0T

(H)

]
, (2.3)

where M does not depend on α, φ, ψ, ξ, and f(t).

Here, Cα,α
0T (H) is the space obtained by completion of the space of all smooth H-valued functions

ρ on [0, T ] with the norm

∥ρ∥Cα,α
0T (H) = ∥ρ∥C(H) + sup

0≤t<t+τ≤T

(t+ τ)α(T − t)α∥ρ(t+ τ)− ρ(t)∥H
τα

.
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Proof. We will obtain the representation formula for solution of auxiliary problem (1.3). Ap-

plying formula of [27, p.205], we get

v(t) = (I − e−2TB)−1{(e−tB − e−(2T−t)B)v(0)

+(e−(T−t)B − e−(T+t)B)v(T )− (e−(T−t)B − e−(T+t)B)

× (2B)
−1

∫ T

0

(e−(T−s)B − e−(T+s)B)f(s)ds}

+(2B)
−1

∫ T

0

(e−|t−s|B − e−(t+s)B)f(s)ds. (2.4)

Here, B = A
1
2 . Using formula (2.4) and nonlocal boundary conditions, we get the system of

equations 

v(0) = (I − e−2TB)−1[(e−λB − e−(2T−λ)B)v(0)

+(e−(T−λ)B − e−(T+λ)B)v(T )]− (I − e−2TB)−1

×(e−(T−λ)B − e−(T+λ)B)(2B)−1
T∫
0

(e−(T−s)B − e−(T+s)B)f(s)ds

+(2B)−1
T∫
0

(e−|λ−s|B − e−(λ+s)B)f(s)ds+ φ− ξ,

v(T ) = v(0) + ψ − φ.

Solving this system, we get

v(0) = −(I − e−λB)−1(I − e−(T−λ)B)−1(I + e−TB)

×(e−(T−λ)B + e−TB)(ψ − φ+ (2B)−1

×
∫ T

0

(e−(T−s)B − e−(T+s)B)f(s)ds)

+(I − e−λB)−1(I − e−(T−λ)B)−1(I + e−TB)

×(φ− ξ + (2B)
−1

∫ T

0

(
e−|λ−s|B − e−(λ+s)B

)
f(s)ds), (2.5)

v(T ) = v(0) + ψ − φ. (2.6)

So, problem (1.3) has a unique solution v(t) that is defined by formulas (2.4), (2.5), and

(2.6). Applying formulas (2.4), (2.5), (2.6), and method of monograph [27], we get

∥v∥C(H) ≤M
[
∥φ∥H + ∥ψ∥H + ∥ξ∥H + ∥f∥C(H)

]
, (2.7)

∥v′′∥
Cα,α
0T

(H)
+ ∥Av∥

Cα,α
0T

(H)

≤ M

[
∥Aφ∥H + ∥Aψ∥H + ∥Aξ∥H +

1

α(1− α)
∥f∥

Cα,α
0T

(H)

]
. (2.8)
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The proofs of estimates (2.2), (2.3) are based on formula (1.2), estimates (2.7) and (2.8). Apply-

ing formula (1.4) and estimates (2.7), (2.2), we can get estimate (2.1). Theorem 2.1 is proved.

Theorem 2.2 Assume that A is a self-adjoint positive definite operator, φ,ψ, ξ ∈ D(A) and

f(t) ∈ Cα,α
0T (H) (0 < α < 1). Then, for the solutions (u(t), p) of problem (1.1) the following

coercive inequality holds:

∥u′′∥Cα,α
0T (H) + ∥Au∥Cα,α

0T (H) + ∥p∥H

≤ M [
1

α(1− α)
∥f∥Cα,α

0T (H) + ∥Aφ∥H + ∥Aψ∥H + ∥Aξ∥H ], (2.9)

where M is independent of α, φ, ψ, ξ, and f(t).

The proof of estimate (2.9) is based on formula (1.2), estimates (2.8) and (2.3).

Now, we consider the application of abstract Theorems 2.1 and 2.2. We consider problem

(1.6). It is known that the differential expression ( [28])

Axu(x) = −
n∑

r=1

(ar(x)uxr )xr

defines a self-adjoint positive definite operator Ax acting on L2(Ω) with the domain D(Ax) ={
u(x) ∈W 2

2 (Ω), u(x) = 0 on S
}
.

Therefore, we can replace inverse problem (1.6) by abstract boundary problem (1.1) in H =

L2(Ω). Using the results of Theorems 2.1 and 2.2, we can obtain the following theorem on

well-posedness of problem (1.6).

Theorem 2.3 For the solution of inverse boundary value problem (1.6), the following stability

estimate is valid:

∥u∥C(L2(Ω)) ≤M [∥φ∥L2(Ω) + ∥ψ∥L2(Ω) + ∥ξ∥L2(Ω) + ∥f∥C(L2(Ω))],

where M is independent of φ(x), ψ(x), ξ(x), and f(t, x).

Theorem 2.4 For the solution of inverse boundary value problem (1.6), the following estimate

is valid:

∥u′′∥Cα,α
0T (L2(Ω)) + ∥u∥Cα,α

0T (W 2
2 (Ω)) + ∥p∥L2(Ω)

≤M [
1

α(1− α)
∥f∥Cα,α

0T (L2(Ω)) + ∥φ∥W 2
2 (Ω) + ∥ψ∥W 2

2 (Ω) + ∥ξ∥W 2
2 (Ω)],

where M does not depend on α,φ(x), ψ(x), ξ(x), and f(t, x).
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The proofs of Theorems 2.3 and 2.4 are based on the symmetry properties of the operator

Ax in L2(Ω) and the following theorem on the coercivity inequality for the solution of the elliptic

differential problem in L2(Ω) .

Theorem 2.5 ( [29]) For the solution of the elliptic differential problemA
xw(x) = ω(x), x ∈ Ω,

w(x) = 0, x ∈ S,

the following coercivity inequality holds :

∥w∥W 2
2 (Ω) ≤M ||ω||L2(Ω),

where M does not depend on ω(x).

3 Well-posedness of difference schemes for problem (1.1)

and its applications

Well-posedness of various types of the difference schemes for elliptic equations had been inves-

tigated in [27,29–31] (see also references therein). Applying the approximate formulas

u(λ) = u([
λ

τ
]τ) + o(τ),

u(λ) = u([
λ

τ
]τ) + (

λ

τ
− [

λ

τ
])(u([

λ

τ
]τ + τ)− u([

λ

τ
]τ)) + o(τ2)

for u(λ) = ξ, inverse problem (1.1) corresponds to the following first and second order of accuracy

difference problems −τ−2(uk+1 − 2uk + uk−1) +Auk = θk + p, θk = f(tk),

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = T, u0 = φ, uN = ψ, ul = ξ,
(3.1)


−τ−2(uk+1 − 2uk + uk−1) +Auk = θk + p, θk = f(tk),

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = T,

u0 = φ, uN = ψ, ul +
(
λ
τ − l

)
(ul+1 − ul) = ξ.

(3.2)

Here, l =
[
λ
τ

]
and [·] denotes the greatest integer function.

First, we consider the first order of accuracy difference scheme (3.1). As in the differential

case for finding a solution {uk}N−1
k=1 of problem (3.1), we will apply the substitution

uk = vk +A−1p, (3.3)
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where {vk}Nk=0 is the solution of the following auxiliary nonlocal boundary value difference

problem. Then, we get −τ−2(vk+1 − 2vk + vk−1) +Avk = θk, 1 ≤ k ≤ N − 1,

v0 − vl = φ− ξ, vN − vl = ψ − ξ,
(3.4)

where p is the unknown element defined by formulas

p = Aφ−Av0 or p = Aψ −AvN . (3.5)

For solving of problem (3.1), we will consider the following algorithm which includes three stages

as in algorithm for solving problem (1.1). In the first stage, we consider the auxiliary nonlocal

boundary value difference problem (3.4) and we will obtain {vk}Nk=0 .

In the second stage, we will put k = 0 or k = N and find v0 or vN , respectively. Then, using

(3.5), we can obtain p. In the third stage, we will use formula (3.3) for obtaining the solution

{uk}N−1
k=1 of difference problem (3.1).

It is well-known (see [28]) that C = 1
2 (τA +

√
4A+ τ2A2) is a self-adjoint positive definite

operator and R = (I + τC)−1 which is defined on the whole space H is a bounded operator.

Here, I is the identity operator.

Theorem 3.1 Assume that A is a self-adjoint positive definite operator, φ,ψ, ξ ∈ D(A) and

{θk}N−1
k=1 ∈ Cα,α

τ (H) (0 < α < 1) . Then, for the solutions
(
{uk}N−1

k=1 , p
)

of difference problem

(3.1) the following stability estimates hold:∥∥∥{uk}N−1
k=1

∥∥∥
Cτ (H)

≤M

[
∥φ∥H + ∥ψ∥H + ∥ξ∥H +

∥∥∥{θk}N−1
k=1

∥∥∥
Cτ (H)

]
, (3.6)

∥∥A−1p
∥∥
H

≤M

[
∥φ∥H + ∥ψ∥H + ∥ξ∥H +

∥∥∥{θk}N−1
k=1

∥∥∥
Cτ (H)

]
, (3.7)

∥p∥H ≤M

[
∥Aφ∥H + ∥Aψ∥H + ∥Aξ∥H +

1

α(1− α)

∥∥∥{θk}N−1
k=1

∥∥∥
Cα,α
τ (H)

]
, (3.8)

where M does not depend on τ, α, φ, ψ, ξ, and {θk}N−1
k=1 .

Here, Cα,α
τ (H) is the space of all H-valued grid functions {θk}N−1

k=1 in the norm∥∥∥{θk}N−1
k=1

∥∥∥
Cα,α
τ (H)

=
∥∥∥{θk}N−1

k=1

∥∥∥
Cτ (H)

+ sup
1≤k<k+n≤N−1

(kτ + nτ)α(T − kτ)α∥θk+n − θk∥H
(nτ)

α .
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Proof. We will obtain the representation formula for solution of auxiliary problem (3.4). By

using formula (see, [27]), we get

vk = (I −R2N )−1[
((
Rk −R2N−k

)
v0 +

(
RN−k −RN+k

)
vN

)
−
(
RN−k −RN+k

)
(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(
RN−i −RN+i

)
θiτ ]

+(I + τC)(2I + τC)−1C−1
N−1∑
i=1

(
R|k−i| −Rk+i

)
θiτ. (3.9)

Applying formula (3.9) and nonlocal boundary conditions v0 − vl = φ− ξ, vN − vl = ψ − ξ, we

get the system of equations

v0 = (I −R2N )−1
((
Rl −R2N−l

)
v0 +

(
RN−l −RN+l

)
vN

)
−(I −R2N )−1

(
RN−l −RN+l

)
(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(
RN−i −RN+i

)
θiτ

+(I + τC)(2I + τC)−1C−1
N−1∑
i=1

(
R|l−i| −Rl+i

)
θiτ + φ− ξ,

vN = v0 + ψ − φ.

(3.10)

In the similar way as in [16, Lemma 3.2], we can state that the operator

Q = I −R2N −Rl +R2N−l −RN−l +RN+l = (I −RN−l)(I −RN )(I −Rl)

has inverse and moreover

Q−1 =
(
I −Rl

)−1
(I −RN )−1(I −RN−l)−1.

Solving system (3.10), we have

v0 = −Q−1
(
RN−l −RN+l

)
(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(
RN−i −RN+i

)
θiτ +Q−1(I −R2N )(I + τC)

×(2I + τC)−1C−1
N−1∑
i=1

(
R|l−i| −Rl+i

)
θiτ

+Q−1(I −R2N ) (φ− ξ) +Q−1
(
RN−l −RN+l

)
(ψ − φ), (3.11)

vN = v0 + ψ − φ. (3.12)

So, difference problem (3.4) has a unique solution {vk}Nk=0 defined by formulas (3.9), (3.11), and

(3.12). Applying formulas (3.9), (3.11), (3.12) and method of monograph [27], we get∥∥∥{vk}N−1
k=1

∥∥∥
Cτ (H)

≤M

[
∥φ∥H + ∥ψ∥H + ∥ξ∥H +

∥∥∥{θk}N−1
k=1

∥∥∥
Cτ (H)

]
, (3.13)
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∥∥∥{τ−2(vk+1 − 2vk + vk−1)
}N−1

k=1

∥∥∥
Cα,α
τ (H)

+
∥∥∥{Avk}N−1

k=1

∥∥∥
Cα,α
τ (H)

≤M

[
∥Aφ∥H + ∥Aψ∥H + ∥Aξ∥H +

1

α(1− α)

∥∥∥{θk}N−1
k=1

∥∥∥
Cα,α
τ (H)

]
. (3.14)

The proofs of estimates (3.7), (3.8) are based on formula (3.3), estimates (3.13), (3.14). Applying

formula (3.3) and estimates (3.13), (3.7), we can get estimate (3.6). Theorem 3.1 is proved.

Theorem 3.2 Assume that A is a self-adjoint positive definite operator, φ,ψ, ξ ∈ D(A) and

{θk}N−1
k=1 ∈ Cα,α

τ (H) (0 < α < 1) . Then, for the solutions
(
{uk}N−1

k=1 , p
)

of difference problem

(3.1) the following coercive inequality holds:∥∥∥{τ−2(uk+1 − 2uk + uk−1)
}N−1

k=1

∥∥∥
Cα,α
τ (H)

+
∥∥∥{Auk}N−1

k=1

∥∥∥
Cα,α
τ (H)

+ ∥p∥H

≤M

[
1

α(1− α)

∥∥∥{θk}N−1
k=1

∥∥∥
Cα,α
τ (H)

+ ∥Aφ∥H + ∥Aψ∥H + ∥Aξ∥H

]
, (3.15)

where M is independent of τ, α, φ, ψ, ξ, and {θk}N−1
k=1 .

The proof of estimate (3.15) is based on formula (3.3) and estimates (3.14), (3.8).

Second, we consider the second order of accuracy difference scheme (3.2). We will use the

same three stages mentioned above for solving difference problem (3.2).

Applying (3.3) to the second order accuracy difference scheme (3.2) for finding {vk}Nk=0, we

get the following auxiliary difference problem
−τ−2(vk+1 − 2vk + vk−1) +Avk = θk, 1 ≤ k ≤ N − 1,

v0 = −
(
λ
τ − l − 1

)
vl +

(
λ
τ − l

)
vl+1 + φ− ξ,

vN = −
(
λ
τ − l − 1

)
vl +

(
λ
τ − l

)
vl+1 + ψ − ξ.

(3.16)

Theorem 3.3 Assume that A is a self-adjoint positive definite operator, φ,ψ, ξ ∈ D(A) and

{θk}N−1
k=1 ∈ Cα,α

τ (H) (0 < α < 1) . Then, for the solutions
(
{uk}N−1

k=1 , p
)

of difference problem

(3.2) stability estimates (3.6), (3.7) and (3.8) hold.

Proof. In the similar way as in [16, Lemma 3.3] we can obtain that, the operator

Q1 = I −R2N +
(
λ
τ − l − 1

) (
Rl −R2N−l +RN−l −RN+l

)
−
(
λ
τ − l

) (
Rl+1 −R2N−l−1 +RN−l−1 −RN+l+1

)
has inverse

Q−1
1 = (I −R2N +

(
λ
τ − l − 1

) (
Rl −R2N−l +RN−l −RN+l

)
−
(
λ
τ − l

) (
Rl+1 −R2N−l−1 +RN−l−1 −RN+l+1

)
)−1.
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Applying formula (3.9) for solving auxiliary difference problem (3.16) and nonlocal boundary

conditions

v0 = −
(
λ
τ − l − 1

)
vl +

(
λ
τ − l

)
vl+1 + φ− ξ,

vN = −
(
λ
τ − l − 1

)
vl +

(
λ
τ − l

)
vl+1 + ψ − ξ

we get the system of equations



v0 = −(λτ − l − 1)(I −R2N )−1[(Rl −R2N−l)v0 + (RN−l −RN+l)vN ]

+(λτ − l − 1)(I −R2N )−1(RN−l −RN+l)(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(RN−i −RN+i)θiτ − (λτ − l − 1)(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(
R|l−i| −Rl+i

)
θiτ +

(
λ
τ − l

)
(I −R2N )−1

×[(Rl+1 −R2N−l−1)v0 + (RN−l−1 −RN+l+1)vN ]− (λτ − l)

×(I −R2N )−1(RN−l−1 −RN+l+1)(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(RN−i −RN+i)θiτ + (λτ − l)(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(R|l+1−i| −Rl+1+i)θiτ + φ− ξ,

vN = v0 + ψ − φ.

(3.17)

Solving system (3.17), we get

v0 = (
λ

τ
− l − 1)Q−1

1 (RN−l −RN+l)(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(RN−i −RN+i)θiτ

−(
λ

τ
− l − 1)Q−1

1 (I −R2N )(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(R|l−i| −Rl+i)θiτ

−(
λ

τ
− l)Q−1

1 (RN−l−1 −RN+l+1)(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(RN−i −RN+i)θiτ
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+(
λ

τ
− l)Q−1

1 (I −R2N )(I + τC)(2I + τC)−1C−1

×
N−1∑
i=1

(R|l+1−i| −Rl+1+i)θiτ

+Q−1
1 (I −R2N )(φ− ξ) + ((

λ

τ
− l − 1)Q−1

1 (RN−l −RN+l)

+

(
λ

τ
− l

)
Q−1

1

(
RN−l−1 −RN+l+1

)
)(ψ − φ), (3.18)

vN = v0 + ψ − φ. (3.19)

So, difference problem (3.16) has a unique solution {vk}Nk=0 which is defined by formulas (3.9),

(3.18), and (3.19). Applying formulas (3.9), (3.18), and (3.19) and method of monograph [27],

we get estimates (3.13) and (3.14). The proofs of estimates (3.7), (3.8) for difference problems

(3.1) and (3.2) are based on formulas (3.3) and estimates (3.13), (3.14). Applying formula (3.3)

and estimates (3.13), (3.7), we can get estimate (3.6). Theorem 3.3 is proved.

Theorem 3.4 Assume that A is a self-adjoint positive definite operator, φ,ψ, ξ ∈ D(A) and

{θk}N−1
k=1 ∈ Cα,α

τ (H) (0 < α < 1) . Then, for the solutions
(
{uk}N−1

k=1 , p
)

of difference problem

(3.2) the coercive inequality (3.15) holds.

The proof Theorem 3.4 is based on formula (3.16) and estimates (3.14), (3.8).

Now, we give the application of abstract Theorems 3.1-3.4. We consider problem (1.6). We

will discretize problem (1.6) into two steps. In the first step, we define the grid spaces

Ω̃h = {x = xm = (h1m1, · · · , hnmn);m = (m1, · · · ,mn),

mr = 0, · · · ,Mr, hrMr = ℓ, r = 1, · · · , n},

Ωh = Ω̃h ∩ Ω, Sh = Ω̃h ∩ S.

To the differential operator Ax generated by problem (1.6), we assign the difference operator

Ax
h defined by the formula

Ax
hu

h(x) = −
n∑

r=1

(
ar(x)u

h
xr

)
xr,jr

acting in the space of grid functions uh(x), satisfying the condition uh(x) = 0 for all x ∈ Sh. It

is well-known that Ax
h is a self-adjoint positive definite operator.
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By using Ax
h, for obtaining v

h(t, x) functions, we arrive at auxiliary nonlocal boundary value

problem 
−d2vh(t,x)

dt2 +Ax
hv

h(t, x) = fh(t, x), 0 < t < T, x ∈ Ωh,

vh(0, x)− vh(λ, x) = φ(x)− ξ(x), x ∈ Ω̃h,

vh(T, x)− vh(λ, x) = ψ(x)− ξ(x), x ∈ Ω̃h

(3.20)

for a system of ordinary differential equations. For calculation of ph(x), we have formula

ph(x) = Ax
hφ

h(x)−Ax
hv

h(0, x), x ∈ Ω̃h. (3.21)

In the second step, problem (3.20) is replaced by (3.1) and (3.2) as

− vh
k+1(x)−2vh

k (x)+vh
k−1(x)

τ2 +Ax
hv

h
k (x) = fhk (x),

fhk (x) = fh(tk, x), tk = kτ, 1 ≤ k ≤ N − 1, x ∈ Ωh,

vh0 (x)− vhl (x) = φh(x)− ξh(x), x ∈ Ω̃h,

vhN (x)− vhl (x) = ψh(x)− ξh(x), x ∈ Ω̃h,

(3.22)



−vh
k+1(x)−2vh

k (x)+vh
k−1(x)

τ2 +Ax
hv

h
k (x) = fhk (x),

fhk (x) = fh(tk, x), tk = kτ, 1 ≤ k ≤ N, x ∈ Ωh,

vh0 (x)−
(
λ
τ − l

)
vhl+1(x) +

(
λ
τ − l − 1

)
vhl (x) = φh(x)− ξh(x),

vhN (x)−
(
λ
τ − l

)
vhl+1(x) +

(
λ
τ − l − 1

)
vhl (x) = ψh(x)− ξh(x),

x ∈ Ω̃h.

(3.23)

To formulate our results, let L2h = L2(Ω̃h) and W 2
2h = W 2

2 (Ω̃h) be spaces of the grid

functions ρh(x) = {ρ(h1m1, · · · , hnmn)} defined on Ω̃h, equipped with the norms

∥∥ρh∥∥
L2h

= (
∑
x∈Ω̃h

|ρh(x)|2h1 · · ·hn)1/2,

∥∥ρh∥∥
W 2

2h

=
∥∥ρh∥∥

L2h
+ (

∑
x∈Ω̃h

n∑
r=1

∣∣(ρh)xr

∣∣2 h1 · · ·hn)1/2
+(

∑
x∈Ω̃h

n∑
r=1

∣∣(ρh(x))xrxr, mr

∣∣2 h1 · · ·hn)1/2.
Theorem 3.5 Let τ and |h| =

√
h21 + · · ·+ h2n be sufficiently small positive numbers. Then,
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for the solutions of difference schemes (3.1) and (3.2) the following stability estimates hold:

∥∥∥{uhk}N−1

1

∥∥∥
Cτ (L2h)

≤ M [
∥∥φh

∥∥
L2h

+
∥∥ψh

∥∥
L2h

+
∥∥ξh∥∥

L2h
+
∥∥∥{fhk }N−1

1

∥∥∥
Cτ (L2h)

],∥∥ph∥∥
L2h

≤ M [
∥∥φh

∥∥
W 2

2h

+
∥∥ψh

∥∥
W 2

2h

+
∥∥ξh∥∥

W 2
2h

+
1

α(1− α)

∥∥∥{fhk }N−1

1

∥∥∥
Cτ (L2h)

],

where M is independent of τ, α, h, φh(x), ψh(x), ξh(x) and
{
fhk (x)

}N−1

1
.

Theorem 3.6 Let τ and |h| =
√
h21 + · · ·+ h2n be sufficiently small positive numbers. Then,

for the solutions of difference schemes (3.1) and (3.2) the following almost coercive stability

estimate holds: ∥∥∥∥∥∥
{
uhk+1 − 2uhk + ukk−1

τ2
)

}N−1

1

∥∥∥∥∥∥
Cτ (L2h)

+
∥∥∥{uhk}N−1

1

∥∥∥
Cτ (W 2

2h)
+
∥∥ph∥∥

L2h

≤ M [
∥∥φh

∥∥
W 2

2h

+
∥∥ψh

∥∥
W 2

2h

+
∥∥ξh∥∥

W 2
2h

+ ln
1

τ + h

∥∥∥{fhk }N

1

∥∥∥
Cτ (L2h)

],

where M does not depend on τ, α, h, φh(x), ψh(x), ξh(x), and
{
fhk (x)

}N−1

1
.

The proofs of Theorems 3.5 and 3.6 are based on the symmetry property of the operator

Ax
h in L2h and the following theorem on the coercivity inequality for the solution of the elliptic

difference problem in L2h.

Theorem 3.7 ( [31]) For the solution of the elliptic difference problem

A
x
hu

h(x) = ωh(x), x ∈ Ω̃h,

uh(x) = 0, x ∈ Sh,

the following coercivity inequality holds:

n∑
r=1

∥∥(uhk)xrxr,jr

∥∥
L2h

≤M ||ωh||L2h
,

where M is independent of h and ω.
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4 Numerical results

For the numerical result, we consider the inverse problem

−∂2u(t,x)
∂t2 − ∂

∂x

(
(1 + x)∂u(t,x)∂x

)
= f(t, x) + p(x), 0 < x < π, 0 < t < T,

f(t, x) = t sin(x)− (exp (−t) + t) (cos (x)− x sin(x)) ,

u(0, x) = 2 sin(x), 0 ≤ x ≤ π,

u(T, x) = (exp (−T ) + T + 1) sin(x), 0 ≤ x ≤ π,

u(λ, x) = (exp (−λ) + λ+ 1) sin(x), 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ T, λ = 3T
5

(4.1)

for the elliptic equation. It is easy to see that u(t, x) = (exp (−t) + t+ 1) sin(x) and p(x) =

− cos (x) + (1 + x) sin(x) are the exact solutions of (4.1).

For approximate solution of nonlocal boundary value problem (1.3), consider the set [0, T ]τ×

[0, π]hof a family of grid points depending on the small parameters τ and h

[0, T ]τ × [0, π]h = {(tk, xn) : tk = kτ, k = 1, · · · , N − 1, Nτ = T,

xn = nh, n = 1, · · · ,M − 1, Mh = π}.

Applying (3.22), we get difference schemes of the first order of accuracy in t and the second

order of accuracy in x

vk+1
n −2vk

n+vk−1
n

τ2 + (1 + xn)
vk
n+1−2vk

n+vk
n−1

h2 +
vk
n+1−vk

n−1

2h = θkn,

θkn = −f(tk, xn), k = 1, · · · , N − 1, n = 1, · · · ,M − 1,

vk0 = vkM = 0, k = 0, · · · , N,

v0n − vln = φn − ξn, n = 0, · · · ,M,

vNn − vln = ψn − ξn, n = 0, · · · ,M,

φn = φ (xn) , ψn = ψ (xn) , ξn = ξ (xn) , l =
[
λ
τ

]
(4.2)

for the approximate solutions of auxiliary nonlocal boundary value problem (1.3) and

wk+1
n −2wk

n+wk−1
n

τ2 + (1 + xn)
wk

n+1−2wk
n+wk

n−1

h2 +
wk

n+1−wk
n−1

2h = −pn,

k = 1, · · · , N − 1, pn = p (xn) , n = 1, · · · ,M − 1,

wk
0 = wk

M = 0, k = 0, · · · , N,

w0
n = ξn − vln, n = 0, · · · ,M, l =

[
λ
τ

]
,

wN
n = ξn − vln, ξn = ξ (xn) , n = 0, · · · ,M,

(4.3)

for the approximate solutions of boundary value problem (1.5).
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Applying (3.21) and second order of accuracy in x approximation of A, we get the following

values of p in grid points

pn = −(1 + xn)
(φn+1 − v0n+1)− 2(φn − v0n) + (φn−1 − v0n−1)

h2
(4.4)

−
(φn+1 − v0n+1)− (φn−1 − v0n−1)

2h
, n = 1, · · · ,M − 1.

We can rewrite difference scheme (4.2) in the following matrix form

Anvn+1 +Bnvn + Cnvn−1 = Iθkn, n = 1, · · · ,M − 1, (4.5)

v0 =
−→
0 , vM =

−→
0 .

Here, θn is (N + 1)× 1 column matrix, An, Bn, Cn are (N + 1)× (N + 1) square matrices

An =



0 0 0 0 · · · 0 0 0 0

0 an 0 0 · · · 0 0 0 0

0 0 an 0 · · · 0 0 0 0

0 0 0 an · · · 0 0 0 0
...

...
...

... · · ·
...

...
...

...

0 0 0 0 · · · an 0 0 0

0 0 0 0 · · · 0 an 0 0

0 0 0 0 · · · 0 0 an 0

0 0 0 0 · · · 0 0 0 0



, (4.6)

Bn =



1 0 0 0 · · · −1 · · · 0 0 0 0

d bn d 0 · · · 0 · · · 0 0 0 0

0 d bn d · · · 0 · · · 0 0 0 0

0 0 d bn · · · 0 · · · 0 0 0 0
...

...
...

...
...

... · · ·
...

...
...

...

0 0 0 0 · · · 0 · · · bn d 0 0

0 0 0 0 · · · 0 · · · d bn d 0

0 0 0 0 · · · 0 · · · 0 d bn d

0 0 0 0 · · · −1 · · · 0 0 0 1



,
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Cn =



0 0 0 0 · · · 0 0 0 0

0 cn 0 0 · · · 0 0 0 0

0 0 cn 0 · · · 0 0 0 0

0 0 0 cn · · · 0 0 0 0
...

...
...

... · · ·
...

...
...

...

0 0 0 0 · · · cn 0 0 0

0 0 0 0 · · · 0 cn 0 0

0 0 0 0 · · · 0 0 cn 0

0 0 0 0 · · · 0 0 0 0



, (4.7)

where

an =
1 + xn
h2

+
1

2h
, bn = − 2

τ2
− 2(1 + xn)

h2
, (4.8)

cn =
1 + xn
h2

− 1

2h
, d =

1

τ2
.

θn =


θ0n
...

θNn

 ,
θ0n = φn − ξn, θ

N
n = ψn − ξn, n = 1, · · · ,M − 1,

θkn = −f(tk, xn), k = 1, · · · , N − 1, n = 1, · · · ,M − 1,

and I is the (N + 1)× (N + 1) identity matrix,

vs =


v0s
...

vNs


(N+1)×1

, s = n− 1, n, n+ 1,

This type of system is studied by Samarskii and Nikolaev in [32] for difference equations.

We seek solution of (4.5) by the formula

vn = αn+1vn+1 + βn+1, n =M − 1, · · · , 1,

where vM =
−→
0 , αn (n = 1, · · · ,M − 1) are (N + 1) × (N + 1) square matrices and βn (n =

1, · · · ,M − 1) are (N +1)× 1 column matrices. For the solution of difference equation (4.5) we
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need to use the following formulas for αn+1, βn+1

αn+1 = −(Bn + Cnαn)
−1An,

βn+1 = −(Bn + Cnαn)
−1(Iθn − Cnβn), n = 1, · · · ,M − 1,

where α1 is the (N + 1)× (N + 1) zero matrix and β1 is the (N + 1)× 1 zero column vector.

We can rewrite difference scheme (4.3) in the following matrix form

Anwn+1 + Enwn + Cnwn−1 = Iηkn, n = 1, · · · ,M − 1,

w0 =
−→
0 , wM =

−→
0 .

(4.9)

Here, An, En, Cn are (N + 1) × (N + 1) square matrices, An and Cn are defined by (4.6) and

(4.7),

En =



1 0 0 0 · · · 0 0 0 0

d bn d 0 · · · 0 0 0 0

0 d bn d · · · 0 0 0 0

0 0 d bn · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · bn d 0 0

0 0 0 0 · · · d bn d 0

0 0 0 0 · · · 0 d bn d

0 0 0 0 · · · 0 0 0 1



, (4.10)

bn and d are defined by (4.8), ηn is (N + 1)× 1 column matrix,

ηn =


η0n
...

ηNn

 ,
η0n = ξn − vln, η

N
n = ξn − vln, n = 1, · · · ,M − 1,

ηkn = −pn, k = 1, · · · , N − 1, n = 1, · · · ,M − 1,

ws =


w0

s

...

wN
s


(N+1)×1

, s = n− 1, n, n+ 1.

We seek the solution of (4.9) by the formula

wn = αn+1wn+1 + βn+1, n =M − 1, · · · , 1,
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where wM =
−→
0 , αn (n = 1, · · · ,M − 1) are (N + 1) × (N + 1) square matrices and βn (n =

1, · · · ,M − 1) are (N +1)× 1 column matrices. For the solution of difference equation (4.9), we

need to use the following formulas for αn+1, βn+1

αn+1 = −(En + Cnαn)
−1An,

βn+1 = −(En + Cnαn)
−1(Iηn − Cnβn), n = 1, · · · ,M − 1,

where α1 is the (N + 1)× (N + 1) zero matrix and β1 is the (N + 1)× 1 zero column vector.

Now, approximate solution of inverse problem will be defined by

un = vn + wn, n = 0, · · · ,M.

Second, we again consider inverse problem (4.1). Applying (3.23) and formulas for µ

µ(xn+1)− µ(xn−1)

2h
− µ′(xn) = o(h2),

µ(xn+1)− 2µ(xn) + µ(xn−1)

h2
− µ′′(xn) = o(h2),

2µ(0)− 5µ(h) + 4µ(2h)− µ(3h)

h2
− µ′′(0) = o(h2),

2µ(π)− 5µ(π − h) + 4µ(π − 2h)− µ(π − 3h)

h2
− µ′′(π) = o(h2),

we get difference schemes of the second order of accuracy in t and x

vk+1
n −2vk

n+vk−1
n

τ2 + (1 + xn)
vk
n+1−2vk

n+vk
n−1

h2 +
vk
n+1−vk

n−1

2h = θkn,

θkn = −f(tk, xn), k = 1, · · · , N − 1, n = 1, · · · ,M − 1,

vk0 = vkM = 0, k = 0, · · · , N,

v0n +
(
λ
τ − l − 1

)
vln −

(
λ
τ − l

)
vl+1
n = φn − ξn, n = 0, · · · ,M,

vNn +
(
λ
τ − l − 1

)
vln −

(
λ
τ − l

)
vl+1
n = ψn − ξn, n = 0, · · · ,M,

φn = φ (xn) , ψn = ψ (xn) , ξn = ξ (xn) ,

(4.11)

for the approximate solutions of boundary value problem (1.3) and

wk+1
n −2wk

n+wk−1
n

τ2 + (1 + xn)
wk

n+1−2wk
n+wk

n−1

h2 − wk
n+1−wk

n−1

2h = −pn,

k = 1, · · · , N − 1, pn = p (xn) , n = 1, · · · ,M − 1,

wk
0 = wk

M = 0, k = 0, · · · , N,

w0
n = ξn +

(
λ
τ − l − 1

)
vln −

(
λ
τ − l

)
vl+1
n , n = 0, · · · ,M,

wN
n = ξn +

(
λ
τ − l − 1

)
vln −

(
λ
τ − l

)
vl+1
n ,

ξn = ξ (xn) , n = 0, · · · ,M,

(4.12)

for the approximate solutions of nonlocal boundary value problem (1.5).
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We can rewrite difference scheme (4.11) in the matrix form (4.5), where An, Cn are defined

by (4.6), (4.7), (4.8), and Bn will be changed to the following matrix

Bn =



1 0 0 0 · · · 0 y z 0 · · · 0 0 0 0

d bn d 0 · · · 0 0 0 0 · · · 0 0 0 0

0 d bn d · · · 0 0 0 0 · · · 0 0 0 0

0 0 d bn · · · 0 0 0 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · 0 0 0 0 · · · bn d 0 0

0 0 0 0 · · · 0 0 0 0 · · · d bn d 0

0 0 0 0 · · · 0 0 0 0 · · · 0 d bn d

0 0 0 0 · · · 0 y z 0 · · · 0 0 0 1



,

where bn and d are defined by (4.8),

y =
λ

τ
− l − 1, z = −λ

τ
+ l.

Now we will write difference scheme (4.12) in the matrix form (4.9), where An, En, Cn are defined

by (4.6), (4.10), (4.7), (4.8), and ηn is defined by formula

ηn =


η0n
...

ηNn

 ,
η0n = ξn +

(
λ

τ
− l − 1

)
vln −

(
λ

τ
− l

)
vl+1
n ,

ηNn = ξn +

(
λ

τ
− l − 1

)
vln −

(
λ

τ
− l

)
vl+1
n , n = 1, · · · ,M − 1,

ηkn = −pn, k = 1, · · · , N − 1, n = 1, · · · ,M − 1.

Now we give the results of the numerical analysis. In order to get the approximate solution, we

used MATLAB programs. The numerical solutions are recorded for different values ofN =M for

T = 2. Grid functions vkn,u
k
n represent the numerical solutions of difference schemes for auxiliary

nonlocal problem and inverse problem at (tk, xn), respectively. Grid function pn represents the

numerical solutions at xn for unknown function p. For their comparison, errors are computed
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by

EvNM= max
1≤k≤N−1

(
M−1∑
n=1

∣∣v(tk, xn)− vkn
∣∣2 h) 1

2 ,

EuNM= max
1≤k≤N−1

(
M−1∑
n=1

∣∣u(tk, xn)− ukn
∣∣2 h) 1

2 ,

EpM=(
M−1∑
n=1

|p(xn)− pn|2 h)
1
2 .

Tables 1-3 give the error analysis between the exact solutions and solutions derived by difference

schemes. Tables 1-3 are constructed for N =M = 20, 40, 80 and 160. Hence, the second order of

accuracy difference scheme is more accurate comparing to the first order of accuracy difference

scheme.

Table 1. Error analysis for nonlocal problem

N=M=20 N=M=40 N=M=80 N=M=160

Difference scheme

(4.2) 0.089063 0.044215 0.022097 0.011055

Difference scheme

(4.11) 0.0029957 7.48×10−4 1.87×10−4 4.67×10−5

Table 1 is the error analysis between the exact solution v for auxiliary nonlocal problem and

solutions derived by first order and second order accuracy of difference schemes in first stage of

algorithm.

Table 2. Error analysis for p

N=M=20 N=M=40 N=M=80 N=M=160

Difference schemes

(4.2,4.4) 0.22429 0.11413 0.057734 0.029054

Difference schemes

(4.11,4.4) 0.01924 0.0044386 0.0011099 2.77×10−4

Table 2 is the error analysis between the exact solution p of inverse problem and solutions

derived by difference schemes in second stage of algorithm.
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Table 3. Error analysis for u

N=M=20 N=M=40 N=M=80 N=M=160

Difference schemes

(4.2,4.4,4.3) 0.053925 0.11413 0.013105 0.0065324

Difference schemes

(4.11,4.4,4.12) 3.23×10−4 8.13×10−5 2.03×10−5 5.09×10−6

Table 3 is the error analysis between the exact solution u of inverse problem and solutions

derived by first order and second order accuracy of difference schemes.

5 Conclusion

In this work, inverse problem for elliptic equation with Dirichlet condition is considered. The

stability and coercive stability estimates for solution of this problem are established. First and

second order of accuracy difference schemes are presented for approximate solutions of inverse

problem. Theorems on the stability and coercive stability estimates for the solution of difference

schemes for elliptic equation are proved. The theoretical statements for the solution of this

difference schemes are supported by the results of numerical example in a two dimensional case.

As it can be seen from Tables 1-3, second order of accuracy difference scheme is more accurate

comparing with the first order of accuracy difference scheme. As a future work, higher orders

of accuracy difference schemes for the approximate solutions of this problem in an arbitrary

Hilbert space E with strongly positive operator A will be investigated.
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Basel, Switzerland, 1989.

155


