

ORENKO 2018

International Forest Products Congress September 26-29, 2018, Trabzon / TURKEY

THE EFFECT OF SEASONAL CONDITIONS ON THE FLUE GAS (O₂, CO, CO₂, NO_x) VALUES FORMED BY THE COMBUSTION OF WOOD MATERIAL

<u>Ş. Şadiye YAŞAR</u>

Gumushane University, Gumushane Vocational High School, Department of Design, Gumushane, Turkey

Musa ATAR

Gazi University, Faculty of Technology, Department of Wood Products Industry Engineering, Ankara, Turkey

Mehmet YAŞAR

Gumushane University, Gumushane Vocational High School, Department of Design, Gumushane, Turkey

M. Said FİDAN

Bursa Technical University, Faculty of Forestry, Department of Forest Industry Engineering, Bursa, Turkey

This study was carried out to determine the amount of gases (O_2 , CO, CO_2 , NO_x) that emerged with the combustion of the wood material left in the season (outdoor) conditions. For this purpose, Oriental beech (*Fagus orientalis* Lipsky) wood samples were left in outdoor at the beginning of each season after applying impregnation materials (tanalith-E, wolmanit-CB) and varnishes (synthetic, water based). At the end of the seasons, samples were combusted and flue gas device was used for gas measurements. The combustion process was carried out in 3 stages. At the first stage the combustion with flame phase (CF) was carried out, the flame source was cut to achieve self-combustion (SC) and ember combustion phases (EC).

According to the results of flue gas analysis, summer samples showed the lowest O_2 values in CF phase and highest in EC phase. The winter and year groups that received a lot of rain showed the opposite values. At the beginning of the combustion O_2 values increased by impregnation materials and decreased by varnishes. In all combustion phases showed NO_x amounts the highest in summer samples and the lowest in year samples.

Keywords: Outdoor conditions, Combustion, Wood, Impregnation, Flue gases analysis