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Late Cretaceous arc igneous activity: the Eğrikar Monzogranite example
F. Sipahi, A. Kaygusuz, Ç. Saydam Eker, A. Vural and İ. Akpınar

Department of Geology Engineering, Gümüşhane University, TR-2900, Gümüşhane, Turkey

ABSTRACT
The geochemical and Sr–Nd–Pb isotope properties, as well as the Laser Ablation Inductively
Coupled Plasma and Mass Spectrometry (LA-ICP-MS) U–Pb zircon age, of Eğrikar Monzogranite
in the eastern Pontides, are primarily investigated in this study with the aim of determining its
magma source and geodynamic evolution. The U–Pb zircon age obtained from Eğrikar
Monzogranite is 78 ± 1.5 Ma, thereby reflecting the age of monzogranite. The I-type Eğrikar
Monzogranite comprises quartz, plagioclase (An35–45), orthoclase, muscovite, and biotite. The
geochemical analyses of the Eğrikar Monzogranite indicate being medium K calc-alkaline, peralu-
minous, and resembling magmatic arc granite. The Eğrikar Monzogranite is enriched in large ion
lithophile elements and light rare earth elements relative to high field strength elements.
Chondrite-normalized rare earth element patterns have concave upward shapes (LaN/YbN 2.47–
8.58) with pronounced negative Eu anomalies (EuN/Eu* = 0.29–0.65). Initial εNd(i) values vary
between 1.85 and 2.18 and initial 87Sr/86Sr values between 0.7048 and 0.7067. Fractionation of
plagioclase, hornblende, and apatite played an important role in the evolution of Eğrikar
Monzogranite. The crystallization temperatures of the melts ranged from 770°C to 919°C based
on zircon and apatite saturation temperatures. The geochemical and isotopic data suggest being
generated by the partial melting of mafic lower crustal sources.
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1. Introduction

Medium K calc-alkaline and I-type plutons, including sub-
duction-relatedmagmatic suites, have shown similarities in
many convergent tectonic settings. Investigation and
genetic classifications of plutonic rocks are based on the
crustal, mantle, or mixed components; variable melting
conditions; fractional crystallization (FC); and crustal con-
tamination during their petrogenesis (Chappell and White
1992; Roberts and Clemens 1993; Thompson and Connolly
1995; Altherr and Siebel 2002; Chen et al. 2002). TheAlpine–
Himalayan orogenic belt in Turkey, which is between the
Eurasia and Africa-Arabia plates, lies in an important geo-
dynamic position. The structure of the southern coast of the
Black Sea in the north of Turkey is an east–west trending
and south-dipping reverse fault and Black Sea basin is
known as a back arc basin during Cretaceous times
(Nikishin et al. 2003). The Black Sea region (i.e. Turkey)
represents a well-preserved continental magmatic arc
(Dokuz et al. 2010; Eyüboğlu et al. 2011), which resulted
from the subduction of the Neotethyan oceanic crust
beneath the Eurasian plate during the Senonian epoch,
and includes various intrusive and eruptive rocks (Figure 1
(a)). Moreover, the Black Sea region is important for metal-
logenic provinces and includes many types of ore deposits

(e.g. volcanogenic massive sulphide, porphyry copper,
skarn, and epithermal vein-types deposits). During the geo-
logical duration, granitoids are important for the evolution
and development of the continental crust, as well as the
formation of ore deposits (Sipahi 2011; Sipahi and Sadıklar
2011; Eyüboğlu et al. 2015; Akaryalı 2016; Akaryalı and
Akbulut 2016). The ages of plutonic rocks in the eastern
Black Sea region change from Paleozoic (Topuz et al. 2010;
Kaygusuz et al. 2012a, 2016) to Cretaceous (Yılmaz et al.
2000; Boztuğ et al. 2006; Karslı et al. 2010; Kaygusuz and
Aydınçakır 2011; Kaygusuz and Şen 2011; Sipahi 2011;
Kaygusuz et al. 2013, 2014) and Eocene (Boztuğ et al.
2004; Topuz et al. 2005; Yılmaz-Şahin 2005; Eyüboğlu et al.
2011a; Figure 1(b); Table 1). The geochemical and isotopic
characteristics of the Late Cretaceous granitoidic rocks in
eastern Pontides were described by some researchers
(Figure 2(a); Table 1). The emplacements of these plutons,
from high-K calc-alkaline metaluminous–peraluminous to
alkaline compositions, range from arc-collisional through
syn-collisional to post-collisional (Yılmaz and Boztuğ 1996;
Okay and Şahintürk 1997; Yılmaz et al. 1997; Boztuğ et al.
2003; Arslan and Aslan 2006).

In the Eğrikar area of the Gümüşhane from the east-
ern Black Sea region, arc-related magmatism developed
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under a compressional regime and is characterized by
the predominance of calc-alkaline monzogranite. Prior
to the current research, knowledge on the geochrono-
logical age, as well as the geochemical and isotopic
data, of Eğrikar Monzogranite was uncertain. The pre-
sent study primarily discusses the detailed petrography,
whole-rock geochemistry, Sr–Nd–Pb isotope composi-
tions, and U–Pb zircon age of this monzogranite to
determine its magma source and evolution.

2. Regional geology

The Black Sea region of Turkey are known as Pontides
(Şengör and Yılmaz 1981; Okay and Tüysüz 1999). The
Pontides belt extending between the Lesser Caucasus in
the east and the Balkans in the west is divided into western

Pontides, Central Pontides, and eastern Pontides because
of the different tectonic units. The eastern Pontides is
distinguished from the western Pontides by the presence
of a large volume of magmatic rocks (Okay and Şahintürk
1997; Okay and Tüysüz 1999). The investigated area is
located in the eastern Pontides, which is a magmatic arc,
block-faulted tectonic formation with subduction playing a
role in the settlement of granitoids from the Permo–
Carboniferous to the Eocene periods during the subduc-
tion of the Tethyan oceanic crust (Gedikoğlu 1978; Şengör
and Yılmaz 1981). The basement of the eastern Black Sea
region consists of early Carboniferous metamorphic rocks
and Late Carboniferous granitoids (Topuz et al. 2010; Dokuz
2011; Kaygusuz et al. 2012a, 2016). Jurassic volcanic rocks
found unconformably on the basement of the eastern
Black Sea region. Jurassic volcano-sedimentary rocks

Figure 1. (a) Tectonic and Late Cretaceous magmatic rocks map of Turkey (modified after MTA 2011) and (b) simplified geological
map showing the granitoid distribution in the Eastern Pontides (modified after Gedik et al. 1992). NAFZ: North-Anatolian fault zone;
EAFZ: East-Anatolian fault zone; DSFZ: Dead Sea fault zone.
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developed in an extension setting being possibly related to
rifting (Arslan et al. 1997; Şen 2007; Saydam Eker et al.
2012). These rocks are overlaid conformably by the
Middle–Late Jurassic and Cretaceous carbonates (Okay
and Şahintürk 1997). The Late Cretaceous units unconform-
ably overlying these carbonate rocks consist of sedimen-
tary rocks in the southern part and volcanic rocks in the
northern part of the eastern Black Sea region (Yılmaz and
Korkmaz 1999). Late Cretaceous volcanic rocks are mainly
tholeiitic and calc-alkaline and display typical island arc
characteristics (Çamur et al. 1996; Arslan et al. 1997; Sipahi
and Sadıklar 2014; Sipahi et al. 2014). The Late Cretaceous
aged calc-alkaline volcanic arc-related series were likely
formed during closure of the Neo-Tethys Ocean (Rolland
et al. 2010). Several granitoidic rocks were emplaced into
the magmatic arc that was active during the Jurassic and
Paleocene times. Plutonic rocks, such as Dağbaşı Pluton
(Kaygusuz and Aydınçakır 2011), Harşit pluton (Karslı et al.
2010), Torul pluton (Kaygusuz et al. 2010), Köprübaşı Pluton
(Kaygusuz and Şen 2011), Turnagöl Plutons (Kaygusuz et al.
2013), and Camiboğazı Pluton (Kaygusuz et al. 2014), have
been regarded as products of north-vergent subduction of
Neotethyan oceanic crust. In addition, Early Cretaceous
subduction-related calc-alkalinemagmatism is a good indi-
cator for porphyry Cu–Mo systems in the eastern part of
the eastern Pontides (Delibaş et al. 2016). Eocene volcanic
and sedimentary rocks unconformably overlie the Late
Cretaceous series (Aydınçakır 2014; Aydınçakır and Şen

2014; Yücel et al. 2014). The eastern Black Sea region
remained above sea level probably because of the collision
between the magmatic arc and the Tauride–Anatolide
block from the Paleocene to early Eocene (Okay and
Şahintürk 1997; Boztuğ et al. 2004).

3. Analytical methods

3.1. Whole-rock geochemical analyses

A total of 20 samples were obtained from Eğrikar
Granitoid. The modal mineralogy of these samples
was determined through point counting using a
Swift automatic counter fitted to a polarizing micro-
scope in Gümüşhane University, Department of
Geology Engineering (Supplementary Table 1).
Microscopic studies resulted in 12 representative
samples being selected for major, trace, and rare
earth element (REE) analyses that were performed at
the commercial ACME Laboratories, Ltd. (Vancouver,
Canada). Major elements were measured by induc-
tively coupled plasma–atomic emission spectrometry
after fusion with LiBO2. The 0.2 g of sample powder
and 1.5 g of LiBO2 flux were mixed in a graphite
crucible and subsequently heated to 1050°C for
15 min for trace elements and REE analyses.
Detection limits are in the range of 0.01–0.1 wt%
for the major oxides, 0.1–10 ppm for the trace ele-
ments, and 0.01–0.5 ppm for REEs.

Table 1. The compilation of geochronological data of Late Cretaceous plutons from the eastern Pontides in NE Turkey.
Locations in
Figure 2a Rock type Age (Ma) Method Reference

1-Harşit q-Monzonite 79 ± 4.3 Ar–Ar Karslı et al. (2010)
2-Kürtün Granodiorite 68.4 ± 3.4 K/Ar Jica (1986)
3-South of Dereli Granodiorite 78.3 ± 1.5 K/Ar Moore et al. (1980)

Granodiorite 69.4 ± 2.7–74.1±2.9 Fission track
(apatite)

Boztuğ et al. (2004)

4- East of Dereli Granodiorite 71.4 ± 1.0–84.0±1.6 K/Ar Moore et al. (1980)
5-Arpaköy Diorite 82.00 ± 2.3 U–Pb (zircon) Kaygusuz et al. (2012b)
6-Torul Syenogranite 77.9 ± 0.3 Rb/Sr Kaygusuz et al. (2008)

Biotite hornblende
monzogranite

80.1 ± 1.6 U–Pb (zircon) Kaygusuz et al. (2010)

q-Monzodiorite 79.8 ± 1.2 U–Pb (zircon) Kaygusuz et al. (2010)
q-Monzonite 78.8 ± 1.2 U–Pb (zircon) Kaygusuz et al. (2010)

7-Sarıosman hornblende monzogranite 82.7 ± 1.5 U–Pb (zircon) Kaygusuz et al. (2009)
8-Köprübaşı Granodiorite 79.3 ± 1.4 U–Pb (zircon) Kaygusuz and Şen (2011); Kaygusuz et al.

(2012b)
9-Turnagöl Granodiorite 78.07 ± 0.73 U–Pb (zircon) Kaygusuz et al. (2013)
10-Ayeser q-Monzonite 74.73 ± 0.86 U–Pb (zircon) Kaygusuz et al. (2012b)
11-Camiboğazı q-Monzonite 72.48 ± 0.89 U–Pb (zircon) Kaygusuz et al. (2014)

Diorite 76.21 ± 0.79 U–Pb (zircon) Kaygusuz et al. (2014)
Monzogranite 75.04 ± 0.83 U–Pb (zircon) Kaygusuz et al. (2014)
Monzodiorite 75.65 ± 0.50 U–Pb (zircon) Kaygusuz et al. (2014)

12-Dağbaşı Tonalite 88.1 ± 1.7 U–Pb (zircon) Kaygusuz and Aydınçakır (2009)
Granodiorite 86.0 ± 2.0 U–Pb (zircon) Kaygusuz and Aydınçakır (2009)
Monzogranite 82.9 ± 1.3 U–Pb (zircon) Kaygusuz and Aydınçakır (2009)

13-Oyman Granite 86.82 ± 0.58 U–Pb (zircon) Kaygusuz et al. (2012b)
14-İkizdere Granodiorite 79.3 ± 1.0 K/Ar Moore et al. (1980)
15-İkizdere Granodiorite 70.6 ± 0.5–80.7±0.6 K/Ar Taner (1977)
16-Araklı Granodiorite 75.7 ± 1.55 K/Ar Yılmaz-Şahin (2005)
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Figure 2. (a) The age, some geochemical and isotopic characteristics of the Late Cretaceous plutonic rocks and (b) Simplified
geological map of the study area.
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3.2. Sr, Nd, and Pb isotopes analyses

Sr, Nd, and Pb isotopic analyses were conducted at the
Department of Geological Sciences, New Mexico State
University. Isotopic measurements were made by TIMS
on a VG Sector 30 mass spectrometer. Samples ana-
lysed were loaded onto rhenium filaments on either
Cathodian beads of single filament only or on the side
filament of a triple filament assembly. Reproducibility of
the 87Rb/86Sr and 147Sm/144Nd ratios are within 0.3%,
and the 87Sr/86 Sr and 143Nd/144Nd ratios are within
±0.000025 and ±0.00003, respectively. An analysis of
the NBS 987 standard yielded values of 0.710226 (11),
0.710213 (13), 0.710219 (10), and 0.710260 (11). Pb
samples were analysed using the middle filament posi-
tion of a Cathodian bead assembly. Samples were
loaded using 5% HNO3 and in a matrix of silica gel
and phosphoric acid. Approximately 2 µL of silica gel
was positioned on the filament and 1 µL of phosphoric
acid was added. Standards were also loaded and ana-
lysed using the same procedures. The mean of standard
runs was 206Pb/204Pb = 16.844, 207Pb/204Pb = 15.379,
and 208Pb/204Pb = 36.199. Deviations of the standards
are within 0.2%. Ramos (1992) provided the detailed
analytical procedures for the Sr and Nd isotopic
measurements.

3.3. U–Pb zircon dating analysis

U–Pb zircon dating was performed using LA–ICP–MS at
the Geologic Laboratory Center, China University of
Geosciences (Beijing, China). Zircon grains for U–Pb
dating were extracted using heavy-liquid and magnetic
separation methods and further purified by hand pick-
ing under a binocular microscope. Selected grains were
mounted on an epoxy resin and polished half-way
through. Cathodoluminescence images were used to
examine the internal structures of individual zircon
grains and to ensure an effective selection of analytical
positions. A quadrupole ICP–MS apparatus (Agilent
7500a) was connected to a UP-193 solid-state laser
(193 nm, New Wave Research Inc.) with an automatic
positioning system. Laser spot size, energy density, and
repetition rate were set to approximately 36 µm, 8.5 J/
cm2, and 10 Hz, respectively. The ablated material was
transported into ICP–MS by a high-purity He gas stream
with a flux of 0.8 L/min. The U–Pb isotopic fractionation
effects were corrected using zircon 91500 (Wiedenbeck
et al. 1995) as an external standard. Zircon standard
TEMORA (417 Ma, Black et al. 2003) was also used as a
secondary standard to monitor the deviation of age
measurement/calculation. A total of 10 analyses of
TEMORA yielded the apparent 206Pb/238U ages of 417–

418 Ma. The isotopic ratios and elemental concentra-
tions of zircon were calculated using GLITTER software
(ver. 4.4, Macquarie University). Uncertainties on age
data are given as 1 sigma level. Concordia ages and
diagrams were made using Isoplot/Ex (3.0) (Ludwig
2003). Common lead was corrected following the
method of Andersen (2002).

4. Results

4.1. Petrography

Eğrikar Monzogranite is located approximately 100 km
northwest of Gümüşhane, exhibits an NE–SW elongated
shape, and covers an area of approximately 11 km2

(Figure 2(b)). The shape of the monzogranite is ellipti-
cal, although it is slightly deformed and altered. The
country rocks around Eğrikar Monzogranite comprise
Late Cretaceous volcanic and sedimentary rocks
(Figure 2(b)). Late Cretaceous volcanic rocks consist of
andesite and dacite and their pyroclastics from lower-
most to uppermost, respectively. Volcanic rocks include
limestone (the middle-upper Maastrichtian age based
on paleontological (Rosita contusa (Cushman),
Gansserina gansseri (Bolli), Globotruncana cf. bulloides
Vogler, Globotruncanita cf. conica (White), and
Globotruncana ventricosa (White)) evidence) in the
study area (Figure 2(b)). It is not seen any mineralization
in the contact between volcanic and monzogranite. No
enclaves are observed in the Eğrikar Monzogranite. The
Eğrikar Monzogranite is pink to pinkish grey with med-
ium granular; myrmekitic, and graphic textures com-
prise quartz (33%–46%), plagioclase (26%–34%),
orthoclase (16%–21%), muscovite (1%–6%), biotite
(1%–5%), and magnetite and pyrite as opaque minerals
(Supplementary Table 1; Figure 3). Zircon occurs as an
accessory mineral. Epidote, sericite, and chlorite are
secondary phases. The Eğrikar Monzogranite generally
shows physical alteration towards the east side. The
rocks of the Eğrikar Monzogranite fall into the field of
monzogranite in the QAP (quartz–alkali feldspar–plagi-
oclase) modal mineralogical classification diagram
(Streckeisen 1976) and are compared other Late
Cretaceous granitoidic rocks in the eastern Pontides
from NE Turkey (Figure 4). In the Eğrikar
Monzogranite, quartz is anhedral with irregular cracks,
is interstitial between other minerals, and generally
shows undulose extinction. Quartz size becomes
increasingly smaller in the contact zones between the
country rocks. Plagioclase forms mostly subhedral to
anhedral prismatic and lath-shaped crystals. The grain
sizes of plagioclase vary from 0.3 to 1 mm for large
crystals. Plagioclase shows albite twinning and
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andesine (An35-45) compositions. Large plagioclase crys-
tals may be altered to sericite and clay minerals.
K-feldspars form anhedral to subhedral crystals. A myr-
mekitic texture is observed at the grain boundaries
between quartz and orthoclase (Figure 3(d)). Alteration
to clay minerals is common in the large K-feldspar

crystals. Biotite is subhedral and forms prismatic crys-
tals. Biotite is reddish-brown and altered partially chlor-
itized. Muscovite is a flake form and not the first-order
aluminium silicate phase (Figure 3(c)). Euhedral zircon is
an accessory phase in all rocks and forms short pris-
matic crystals. The petrographic compositions of the

Figure 3. The textures of the Eğrikar Monzogranite. (a) Graphic texture (Samp. No.: E-108), (b) and (c) Granular texture (Samp. No.:
E-109 and E-59) and (d) Myrmekitic granular texture (Sample No.: E-103), Pl: Plagioclase, Q: Quartz, Ort: Orthoclase, Mus: Muscovite.

Figure 4. Modal mineralogical classification diagram (Streckeisen 1976). A: Alkali feldspar, P: Plagioclase, Q: Quartz.
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Eğrikar Monzogranite have the difference from the
other Late Cretaceous Turnagöl, Camiboğazı,
Köprübaşı, Torul, Dağbaşı and Harşit plutonic rocks
from the eastern Pontides in point of mafic mineral
types, and not include hornblende and pyroxene miner-
als (Supplementary Table 1).

4.2. U–Pb zircon dating

Supplementary Table 2 presents the LA–ICP–MS U–Pb zir-
con dating results of Eğrikar Monzogranite. The U–Pb zir-
con dating results of Eğrikar Monzogranite as Concordia
diagrams are shown in Figure 5. The Eğrikar Monzogranite
sample E56 contains abundant zircon grains that are col-
ourless, short to long prismatic, and euhedral (Figure 5(a)).
The zircon grains are mostly fine-grained (i.e. 50–100 µm)
and have aspect ratios of approximately 2. These grains
show oscillatory zoning (Figure 5(a)). All of these features
indicate that zircons are of magmatic origin (Pupin 1980).
Most analyses yielded concordant age data. The 206Pb/238U
age is 78 ± 1.5 Ma (MSWD% 0.95) (Supplementary Table 2;
Figure 5(b)). For the Eğrikar Monzogranite, a Late
Cretaceous age is established using the U–Pb zircon dating,
and is interpreted as the magmatic emplacement age.

4.3. Geochemistry

Supplementary Table 3 shows the results of the geo-
chemical analyses of the representative samples from
Eğrikar Monzogranite. All samples fall in the granite
field on the classification diagram of Middlemost
(1994) (Figure 6(a)). Eğrikar Monzogranite has a narrow
compositional range with SiO2 and Al2O3 contents of
approximately 72–78 wt% and 12–13 wt%, respectively
(Supplementary Table 3). The Late Cretaceous gronitoi-
dic rocks in eastern Pontides have a compositional
variation from diorite to granite. The majority of Late
Cretaceous granitoidic rocks in the eastern Pontide
belong to the medium to high-K calc-alkaline series
(Figure 6(b,c)).The Eğrikar monzogranite is classified as
medium-K calc-alkaline (approximately 1.5–2.3 wt%
K2O) as Torul, Turnagöl, Köprübaşı, Camiboğazı, and
Dağbaşı plutons and peraluminous (aluminium satura-
tion index = A/CNK [molecular Al2O3/(CaO+K2O+Na2O)]
values is from 1.04 to 2.12).

Harker plots of the selected major and trace ele-
ments from Eğrikar Monzogranite (Figure 7) show the
linear variations in the element concentrations. The
Al2O3, CaO, MgO, Fe2O3T, TiO2, and P2O5 abundances
decrease with increasing SiO2 similar to the Harşit
Pluton. Ba defines a positive correlation with increasing
SiO2 content (Figure 7). The Eğrikar Monzogranite and

Dağbaşı Pluton are depleted in Y compared to the
other Late Cretaceous granitoidic rocks (Figure 7).

The general trend of the normal-MORB-normalized
(Sun and McDonough 1989) element concentration
diagram shows the enrichment of large-ion lithophile
elements (LILEs) and the depletion of high-field-
strength elements (HFSEs) of all samples (Figure 8
(a)). The depletion in HFSEs is best expressed by the
negative Nb, P, and Ti anomalies. The general trends
of the normal-MORB-normalized element concentra-
tion of Eğrikar Monzogranite are similar to Dağbaşı,
Harşit, and Jindong plutons; however, that of
Camiboğazı, Turnagöl, and Köprübaşı plutons are
slightly different on Sr (see Figure 8(a)). The samples
of the Turnagöl and Camiboğazı plutons show the
enrichment in LILEs and depletion in HFSEs, whereas
Torul and Köprübaşı plutons display the enrichment
in LILEs and HFSEs according to Eğrikar Monzogranite.
The chondrite-normalized (Boynton 1984) REE pat-
terns of the Eğrikar Monzogranite samples (Figure 8
(b)) are characterized by concave-upward shapes (LaN/
YbN 2.47–8.58) and have negative Eu anomalies (EuN/
Eu*) of 0.29–0.65. The REE pattern of Eğrikar
Monzogranite is similar to that of the Dağbaşı,
Turnagöl, Camiboğazı, and Jindong plutons (see
Figure 8(b)). The samples of the Köprübaşı, Turnagöl,
and Camiboğazı plutons show the enrichment in
LREEs and depletion in HREEs, whereas Torul and
Köprübaşı plutons display the enrichment in LREEs
and HREEs according to Eğrikar Monzogranite.

The tectonic setting of Eğrikar Monzogranite is
interpreted by using various tectono-magmatic discri-
mination diagrams. The samples plot within the vol-
canic arc granite fields, as shown in the Nb vs. Y and
Rb vs. (Y+Nb) diagrams (Pearce et al. 1984; Figure 9(a,
b)), as well as the Rb/30-Hf-Tax3 ternary diagram
(Harris et al. 1986; Figure 9(c)), and are similar to the
Dağbaşı and Jindong plutons. In the (La/Yb) vs. (Th/
Yb) diagram (Figure 9(d)), the Eğrikar Monzogranite,
Dağbaşı, and Jindong plutons samples fall within the
island arc and all samples can be classified as volca-
nic-arc granites, thereby setting emplacement in mag-
matic arc-related environment as supported from
their LREE–LILE-enriched and depleted HFSE charac-
teristics. In the tectonic discrimination diagram of
Whalen et al. (1987), the Eğrikar Monzogranite and
Dağbaşı Pluton samples fall within the I-type granite
field (Figure 9(e)).

4.4. Zircon and apatite saturation temperature

Zircon and apatite saturation temperatures (Watson
and Harrison 1983; Hanchar and Watson 2003; Miller
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et al. 2003) in Eğrikar Monzogranite were calculated
from the whole-rock geochemical data (see
Supplementary Table 4). The Zr (65.1–161 ppm) and
P2O5 (0.01–0.07 wt%) abundances in the Eğrikar
Monzogranite samples result in zircon and apatite
saturation temperatures. The calculated zircon satura-
tion temperatures for Eğrikar Monzogranite range from
770°C to 819°C, whereas the apatite saturation tem-
perature is between 793°C and 919°C. Subhedral zircon

grains appear in the rims of the quartz, orthoclase, and
plagioclase grains. Thus, the crystallization of zircon
started relatively late at temperatures lower than that
of the intruding magma. This result is supported by the
Zr abundances that are not systematically related to the
SiO2 concentration. Therefore, the calculated zircon
saturation temperatures should be considerably lower
than the temperature of the intruding magma (Figure 7
(e)). By contrast, apatite crystallization is thought to

Figure 5. (a) CL images of zircons and (b) Concordia diagram showing LA-ICP-MS U-Pb analyses of zircons for sample E-56 from
Eğrikar Monzogranite.
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have started considerably early because the apatite
grains occur in early crystallized plagioclase, and the
bulk-rock P2O5 content generally decreases with
increasing SiO2 (Figure 7(f)). Thus, the temperatures of
the intruding magmas were probably not substantially
higher than the calculated apatite saturation tempera-
tures of 793–919°C.

4.5. Sr, Nd, and Pb isotopes

Supplementary Tables 6 and 7 list the Sr, Nd, and Pb
isotopic data of the Eğrikar Monzogranite samples. The
initial Sr, Nd, and Pb isotope ratios were calculated using
the Rb, Sr, Sm, Nd, U, Th, and Pb concentration data
obtained from the ICP–MS analyses by assuming a mon-
zogranite age of 78 Ma. The Eğrikar Monzogranite sam-
ples exhibit a narrow range of initial 87Sr/86Sr ratios
(0.7048–0.7064) and εNd(i) values (1.85–2.18). The corre-
sponding Nd model ages (TDM) of the monzogranites
range from 0.67 to 0.83 Ga. In the SiO2 vs. (87Sr/86Sr)i
diagram, the (87Sr/86Sr)i decreases with increase in SiO2

(Figure 10(a)). In the SiO2 vs. (143Nd/144Nd)i diagram
(Figure 10(b)), the samples define nearly horizontal trends
that indicate FC. When Eğrikar Monzogranite is compared
with other Cretaceous plutons from the eastern Black Sea
region, the studied samples have εNdi and (87Sr/86Sr)i
ratios similar to those of the Dağbaşı, Sarıosman, and
Turnagöl plutons but have slightly different (87Sr/86Sr)i
ratios than those from the Torul, Köprübaşı, and Harşit
plutons (Figure 11). The Dağbaşı, Torul, Sarıosman,
Köprübaşı, and Harşit samples show a negative correla-
tion between εNdi and (87Sr/86Sr)i. By contrast, the Eğrikar
Monzogranite and Turnagöl pluton samples show no
evident correlation between these two parameters.

The Eğrikar Monzogranite samples have similar
isotopic compositions: (206Pb/204Pb)i = 17.86–18.58,
(207Pb/204Pb)i = 15.57–15.64, and (208Pb/204Pb)

i = 37.94–38.66 (Supplementary Table 6; Figure 12).
The Eğrikar Monzogranite samples fall within the
fields of the lower continental crust (LCC) described
by Kempton et al. (1997) and close to similar field of
Turnagöl, Torul, Camiboğazı, and Jindong samples
(see Figure 12(a)). In the (206Pb/204Pb)i vs. (-
207Pb/204Pb)i and (208Pb/204Pb)i diagrams
(Figure 12), the studied samples were nearly found
together with Torul, Turnagöl, and Camiboğazı plu-
tons (Kaygusuz et al. 2008, 2013, 2014) and Jindong
Pluton (Oh et al. 2016) which are in the field of arc
magmas (Zartman and Doe 1981).

Figure 6. Chemical classification diagram (Middlemost 1994),
(b) Co vs. Th discrimination diagram (Hastie et al. 2007) and (c)
AFM diagram (Irvine and Baragar 1971) for samples from the
Eğrikar Monzogranite.
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5. Discussion

5.1. Age

The emplacement age of Eğrikar Monzogranite was esti-
mated from stratigraphic criteria and contact relation-
ships in a previous study. Such data are often imprecise
because of rock deformation and tectonic setting.
Information on the emplacement age of Eğrikar
Monzogranite was not satisfactory for its geological set-
ting. UnpublishedGeneral Directorate ofMineral Research
and Exploration (MTA) reports conjectured that the age of
the Eğrikar Monzogranite was Tertiary based on contact
and stratigraphic criteria. Our new LA–ICP–MS U–Pb zir-
con age of Eğrikar Monzogranite is 78 ± 1.5 Ma

(Supplementary Table 5, Figure 5). This age is similar to
the emplacement age of the Turnagöl Pluton
(78.07 ± 0.73 Ma; Kaygusuz et al. 2013), monzogranite
from Camiboğazı pluton (75.04 ± 0.3 Ma; Kaygusuz et al.
2014), monzogranite from Torul pluton (78.8 ± 1.2 Ma to
80.1 ± 1.6 Ma; Kaygusuz et al. 2010), granodiorite from
Köprübaşı Pluton (79.3 ± 1.4 Ma; Kaygusuz and Şen 2011),
monzogranite from Dağbaşı pluton (82.9 ± 1.3 Ma;
Kaygusuz and Aydınçakır 2011), and monzogranite from
Sarıosman pluton (82.7 ± 1.5 Ma; Kaygusuz et al. 2009)
(Table 1). A major pulse of Late Cretaceous igneous activ-
ity occurred around ~78 Ma from the existing data
(Table 1) and the age of the Eğrikar Monzogranite in this
study (78 Ma) coincides with this peak.

Figure 7. Variation diagrams of SiO2 vs. major oxides (wt%) and trace elements (ppm) for samples from the Eğrikar Monzogranite.
Blue arrows show fractional crystallization processes of minerals. Pl: Plagioclase, Kf: K-felspar, Bi: Biotite, Hb: Hornblende, My:
Magnetite, Il: Ilmenite.
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5.2. Petrogenesis

Two main models have been proposed to interpret the
petrogenesis and origin of the calc-alkaline intrusions
such as the Eğrikar Monzogranite: (1) partial melting of
the mafic lower crust at relatively high pressures (e.g.
Roberts and Clemens 1993) or (2) derived from basaltic
parent magmas by the FC or assimilation and FC

processes (e.g. Grove and Donnelly-Nolan 1986; Bacon
and Druitt 1988). The Eğrikar Monzogranite samples are
characterized by weak REE fractionation (LaN/YbN 2.47–
8.58), negative Eu anomalies (EuN/Eu* = 0.29–0.65), low
Sr/Y ratios (0.70–3.18), high Y (18–32 ppm), and Yb
(2.16–3.94 ppm) contents (Supplementary Table 3),
negative Nb and Ta anomalies, and enrichment in

Figure 8. (a) The normalized N-MORB (Sun and McDonough 1989) and (b) Chondrite-normalized diagram (Boynton 1984) for
samples from the Eğrikar Monzogranite.
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LILEs and LREEs. The Y content of Eğrikar Monzogranite
has same with the Late Cretaceous Jindong Plutons
(14–29 ppm; Oh et al. 2016) whereas the Sr (41–81
ppm) content of the Eğrikar Monzogranite ranges
higher than the Jindong Plutons (307–687 ppm; Oh
et al. 2016). A high Sr content is the FC of minerals
that preferentially partition Y, such as amphibole, in the
absence of the significant fractionation of plagioclase
which prefers Sr (Kolb et al. 2013; Oh et al. 2016). The
negative anomalies in Nb, P, and Ti reflect the charac-
teristic of subduction-related magmas, which are often
thought as the relative enrichment of the mantle source
by the influx of LILE through slab dehydration (e.g.
McCulloch and Gamble 1991). The negative anomalies
in Nb, P, and Ti are formed by amphibole-dominated FC
of the hydrous arc magma (Oh et al. 2016). The Eğrikar
Monzogranite samples display relatively homogeneous
isotopic compositions of 87Sr/86Sr(i) ranging from 0.7048
to 0.7064, and of εNd(i) from 1.85 to 2.18
(Supplementary Table 5). The corresponding Nd model
ages (TDM) of the Eğrikar Monzogranite samples are in
the range of 0.67–0.83 Ga. In the Eğrikar Monzogranite
samples like Jindong Pluton, εNd(i) was unchanged
when the 87Sr/86Sr(i) values were increased (Figure 11).
The Eğrikar Monzogranite samples are relatively homo-
genous in isotopic compositions with 143Nd/144Nd(i)

ranging from 0.512658 to 0.512681, and εNd(i) from
1.85 to 2.18. A narrow range in the 87Sr/86Sr(i) ratios
and εNd(i) values of Eğrikar Monzogranite determine a
depleted mantle source region enriched by slab com-
ponents. The positive εNd(i) values suggest a depleted
mantle or mantle-derived end-member (Faure and
Mensing 2005). The 87Sr/86Sr(i) ratio of Eğrikar
Monzogranite is similar to those of the dağbaşı
(0.70561–0.70666), Camiboğazı (0.7049–0.7061), and
Turnagöl (0.70601–0.70626) plutons. However, the
143Nd/144Nd(i) ratios of Eğrikar Monzogranite are higher
than those of the Dağbaşı (0.51237–0.51260),
Camiboğazı (0.51240–0.51252), Turnagöl (0.51238–
0.51240), and Jindong (0.51254–0.51263) plutons.

All data and observations provide a genetic model
that includes melt-interactions of dehydration melting
of mafic meta-igneous (meta-basalt or amphibolite)
lower crustal. Most major oxide and trace element var-
iations of Eğrikar Monzogranite show positive or nega-
tive correlations with increasing SiO2 contents
(Figure 7), thereby playing the significant role of the
FC processes of the different mineral phases during the
evolution of Eğrikar Monzogranite. The rocks are char-
acterized by low CaO and Sr contents and have small
negative Ba, Sr, and Eu anomalies (Figures 7–9). Eğrikar
Monzogranite has strongly negative Eu anomalies

Figure 9. (a) Y vs. Nb diagram (Pearce et al. 1984), (b) Y+Nb vs. Rb diagram (Pearce et al. 1984), c) Rb/30–Hf–Tax3 ternary diagram
(Harris et al. 1986), (d) Th/Yb vs. La/Yb diagram and (e) (1000xGa/Al) vs. Nb classification diagram (Whalen et al. 1987) plot for
samples from the Eğrikar Monzogranite. VAG: Volcanic-arc granites; Syn-COLG: Syncollisional granites; L-P-COLG: Late-post colli-
sional granites; WPG: Within-plate granites; ORG: Ocean-ridge granites.
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(mean EuN/Eu* = 0.29–0.65) that are probably asso-
ciated with plagioclase fractionation (Figure 8). The
Al2O3, MgO, CaO, Fe2O3T, and La contents decrease
and the K2O and Ba increase with increasing SiO2,
thereby suggesting biotite, amphibole, and plagioclase
FC and accumulations of K-feldspar and sodic plagio-
clase (Figure 7). Decreases in TiO2 and P2O5 with
increasing SiO2 content may reflect titanite and apatite
FC, respectively. The depletion in Zr and Y can report to
FC of the accessory phases, such as zircon and titanite.
The rocks of Eğrikar Monzogranite are also character-
ized by negative Nb anomaly (Figure 8), thereby imply-
ing a subduction signature or a few crustal
contributions. The negative anomalies of Nb, P, and Ti
are characteristic features of subduction-related mag-
mas. The negative anomalies of Nb, P, and Ti originated
from the relative enrichment of the mantle source via
LILE addition from the subducting slab to the mantle,
although they may be related to crustal contamination
(Borg et al. 1997). Crustal components are also rich in

Th 3.5 ppm in the bulk continental crust (Taylor and
McLennan 1985). The low Th value (i.e. 3.6–15.2 ppm) in
the Eğrikar Monzogranite samples may indicate the lack
of effects of crustal contamination. The negative corre-
lation between SiO2 and

87Sr/86Sr(i) and the weak corre-
lation between SiO2 and 143Nd/144Nd(i) (Figure 10(a,b))
indicates that assimilation did not play a role in the
generation of the monzogranite.

5.3. Source rock

The Y/Nb ratio of granitoids can distinguish between
the mantle (Y/Nb < 1.2) and crustal (Y/Nb > 1.2) origins
(Eby 1992). The Eğrikar Monzogranite samples have a
1.8:8.1 Y/Nb ratio, thereby suggesting a possible crustal
origin for the magma source. The 206Pb/204Pb(i),
207Pb/204Pb(i), and 208Pb/204Pb values (Figure 12) of
the Eğrikar Monzogranite samples are obtained in the
field of the continental crust (Kempton et al. 1997) and
are close to the data points from the Torul, Turnagöl,

Figure 10. In Eğrikar Monzogranite, (a) SiO2 vs.
87Sr/86Sr(i) and b) SiO2 vs.

143Nd/144Nd(i) diagrams. Dağbaşı Pluton from Kaygusuz
and Aydınçakır (2011), Harşit Pluton from Karslı et al. (2010), Torul Pluton from Kaygusuz et al. (2010), Köprübaşı Pluton from
Kaygusuz et al. (2012b), Turnagöl Pluton from Kaygusuz et al. (2013), Camiboğazı Pluton from Kaygusuz et al. (2014), Jindong
Plutons from Oh et al. (2016).
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and Camiboğazı plutons (Kaygusuz et al. 2008, 2013,
2014) and Jindong Pluton (Oh et al. 2016).

The Eğrikar Monzogranite samples are characterized
by high SiO2 (72–78 wt%) and low Mg# (19–45, except

for one sample), which is consistent with magmas
derived from crustal rocks. The Eğrikar Monzogranite
samples have low (Na2O+K2O)/(Fe2O3T+MgO+TiO2)
and medium (Na2O+K2O+Fe2O3T+MgO+TiO2) values,

Figure 11. The 87Sr/86Sr(i) vs. εNd(i) diagram of the Eğrikar Monzogranite. Dağbaşı Pluton from Kaygusuz and Aydınçakır (2011),
Sarıosman Pluton from Kaygusuz et al. (2009), Harşit Pluton from Karslı et al. (2010), Torul Pluton from Kaygusuz et al. (2010),
Köprübaşı Pluton from Kaygusuz et al. (2012b), Turnagöl Pluton from Kaygusuz et al. (2013), Jindong Pluton from Oh et al. (2016).

Figure 12. (a) and (b) Plot of 206Pb/204Pb(i) vs.
207Pb/204Pb(i) ratios. (c) and (d) Plot of 206Pb/204Pb(i) vs.

208Pb/204Pb(i) ratios of the Eğrikar
Monzogranite. LCC: lower continental crust (Kempton et al. 1997), UCC: upper continental crust (Mason et al. 1996), MORB: middle ocean
rift basalt (Rollinson 1993), EMI and EMII: enrichment mantle (Zindler and Hart 1986), NHRL: Northern Hemisphere reference line (Hart
1984), BE: Bulk earth, HIMU: high µ mantle (Zindler and Hart 1986), DM: depleted mantle (Zindler and Hart 1986), PREMA: prevalent
mantle (Zindler and Hart 1986). Harşit Pluton from Karslı et al. (2010), Torul Pluton from Kaygusuz et al. (2010), Turnagöl Pluton from
Kaygusuz et al. (2013), Camiboğazı Pluton from Kaygusuz et al. (2014), Jindong Pluton from Oh et al. (2016).
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as well as plot in the field of the amphibolite-derived
melts (Figure 14(a,b)). The Th/U values of Eğrikar
Monzogranite range from 3.27 to 5.63, falling in the
field between the continental crustal-derived and
N-MORB-derived magmas, similar to the Dağbaşı and
Jindong plutons (Figure 13(c)). Furthermore, the Nb–Y–
Gax3 ternary plot (Eby 1992) proposes that the magma
of the studied monzogranite was generated as a crustal
origin resulting from the mantle–crust interactions
(Figure 13(d)). The Sr–Nd–Pb isotopic signatures and
trace element characteristics of the Campanian Eğrikar
Monzogranite have suggested an origin involving
amphibolitic lower crustal rocks (Figure 14).

6. Conclusions

Eğrikar Monzogranite is the result of a Late Cretaceous arc-
related magmatic activity in the eastern Black Sea region.

Results of the LA–ICP–MSU–Pb zircon dating indicated that
the emplacement age of Eğrikar Monzogranite is
78 ± 1.5 Ma. This monzogranite has peraluminous and
medium K calc-alkaline characteristics, as well as enriched
in LILE and limited in HFSE, thereby showing features of
arc-related intrusive rocks. The Eğrikar Monzogranite sam-
ples show concave-upward chondrite-normalized REE pat-
terns with negative Eu anomalies. The Eğrikar
Monzogranite shows a small range of Sr–Nd–Pb values. It
has formed through fractionation of plagioclase, hornble-
nde, biotite, apatite, and zircon; the geochemical and iso-
topic data indicate that it is generated by partial melting of
the mafic lower crustal sources.
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