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Well-posedness of boundary value problems for
reverse parabolic equation with integral condition
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Abstract. Reverse parabolic equation with integral condition is considered. Well-posedness
of reverse parabolic problem in the Hölder space is proved. Coercive stability estimates
for solution of three boundary value problems (BVPs) to reverse parabolic equation with
integral condition are established.

Keywords. Reverse parabolic problem, stability, coercive stability, well-posedness.

2010 Mathematics Subject Classification.35K60, 65M06.

1 Introduction

Well-posedness of nonclassical BVPs for parabolic differential equations has been
studied extensively by many researchers (see, e.g., [1–11,14,15] and bibliography
therein).

LetH be Hilbert space andA : H → H be self-adjoint positive definite (SAPD)
operator such thatA > δI for identity operatorI : H → H and some positive
numberδ. In the paper [5], well-posedness of the reverse parabolic problem

du(t)

dt
−Au(t) = f(t),0 ≤ t ≤ 1, (1)

with multipoint nonlocal condition

u(1) =
p
∑

k=1
αku(θk) + ϕ,

0 ≤ θ1 < θ2 < ... < θp < 1
(2)

was established in in the space of smooth functions. In applications, coercivity
estimates for the solution of parabolic differential equations were obtained. Well-
posedness of problem (1), (2) was established under the assumption

|αk| ≤ 1. (3)
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In the papers [6, 8], stable finite difference schemes for theapproximate solution
of the reverse multidimensional parabolic differential equation with various multi-
point boundary conditions are proposed. Coercive stability estimates for difference
schemes are obtained. In [1, 7, 9–11, 14, 15], differential and difference problems
of determining the parameter in a parabolic equations were studied.

In this work, we study reverse problem for parabolic equation (1) with integral
type nonlocal condition:

u(1) =

1
∫

0

ρ(s)u(s)ds+ ϕ. (4)

Suppose that a continuous real valued scalar functionρ be under assumption:

1
∫

0

|ρ(s)| ds ≤ 1. (5)

A functionu : [0,1] → H is said to be a solution of the problem (1), (4) if the
following three conditions are valid:

1. u(t) is continuously differentiable on[0,1].

2. For∀ t ∈ [0,1] the elementu(t) belongs toD(A) and the functionAu(t) is
continuous on[0,1].

3. u(t) satisfies the equation (1) and the nonlocal condition (4).

Denote byC(H) andCα
1 (H), the Banach space of all continuous functions

v : [0,1] → H equipped with the suitable norms

‖v‖C(H) = max0≤t≤1 ‖v(t)‖H ,

‖v‖Cα
1 (H) = ‖v‖C(H) + sup0≤t<t+τ≤1(

1−t
τ

)α ‖v(t+ τ )− v(t)‖H .

Lemma 1.1.[3] For every0 < t < t + τ ≤ 1 and 0 ≤ β ≤ 1, the following
inequalities

∥

∥e−tA
∥

∥

H→H
≤ 1,

∥

∥tAe−tA
∥

∥

H→H
≤ 1,

∥

∥e−tA − e−(t+τ)A
∥

∥

H→H
≤ M τβ

(t+τ)β
,

∥

∥A
(

e−tA − e−(t+τ)A
)∥

∥

H→H
≤ M τβ

t(t+τ)β

(6)

are fulfilled for some positiveM .
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Lemma 1.2.Suppose that the assumption (5) holds. Then, the operator

S = I −

1
∫

0

ρ(τ )e−(1−τ)Adτ = I −D

has a bounded inverseQ = S−1 such that

‖Q‖H→H ≤ M. (7)

Proof. By using spectral representation [13] forA and Cauchy inequality, we have
〈

e−(1−τ)Au, u
〉

≤
∥

∥e−(1−τ)Au
∥

∥

H
· ‖u‖H

≤
∥

∥e−(1−τ)Au
∥

∥

H→H
· ‖u‖H · ‖u‖H

≤ supδ≤µ<∞

∣

∣e−(1−τ)µ
∣

∣ · ‖u‖2
H ≤ e−(1−τ)δ 〈u, u〉

≤ 〈u, u〉 .

Thus, from (5) it follows that

〈(I −D)u, u〉 = 〈u, u〉 − 〈Du, u〉

≥ 〈u, u〉 −
1
∫

0
|ρ(τ )| dτ 〈u, u〉

= (1−
1
∫

0
|ρ(τ )| dτ ) 〈u, u〉

> ρ0 〈u, u〉 .

Hereρ0 > 0.So, there exists bounded inverseQ and inequality (7) holds.

2 Well-posedness of reverse parabolic problem

Theorem 2.1.Assume that (5) is valid,ϕ ∈ D(A), f(t) ∈ Cα
1 (H). Then, prob-

lem (1), (4) has unique solution and it is well-possed inCα
1 (H) and the coercive

estimate

∥

∥u′
∥

∥

Cα
1 (H)

+ ‖Au‖Cα
1 (H) ≤ M(δ)

(

‖Aϕ‖H +
1

α(1− α)
‖f‖Cα

1 (H)

)

is fulfilled, whereM(δ) is independent ofϕ andf.

Proof. If u(1) is given, then the solution of parabolic equation (1) is defined by

u(t) = e−(1−t)Au(1)−

1
∫

t

e−(s−t)Af(s)ds . (8)
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By using (8) and nonlocal condition (4), we have

u(1) =
1
∫

0
ρ(τ )e−(1−τ)Adτ · u(1)−

1
∫

0
ρ(τ )

1
∫

t

e−(s−τ)Af(s)dsdτ + ϕ.

By Lemma (2.1), we can obtain

u(1) = Q



−

1
∫

0

1
∫

t

ρ(τ )e−(s−τ)Af(s)dsdτ + ϕ



 . (9)

Hence, reverse problem (1), (4) has unique solution which isderived by formulas
(8) and (9). We have

Au(t) = e−(1−t)AAu(1)−
1
∫

t

Ae−(s−t)Af(s)ds

= e−(1−t)AAu(1)−
1
∫

t

Ae−(s−t)A [f(s)− f(t)] ds

+
(

e−(1−t)A − I
)

f(t)

(10)

for any t ∈ (0,1) . Applying definition ofCα
1 (H)-norm and corresponding esti-

mates of Lemma (2.1), we have

‖Au(t)‖H ≤ ‖Au(1)‖H +
1
∫

t

‖f‖Cα
1 (H)

(1−t)α(s−t)1−αds+ (1+ 1) ‖f‖Cα
1 (H)

≤ ‖Au(1)‖H +
(

1
α
+ 2
)

‖f‖Cα
1 (H) .

(11)

From (9), it can be obtained

Au(1) = Q

(

−
1
∫

0
ρ(τ )

1
∫

t

Ae−(s−τ)Af(s)dsdτ +Aϕ

)

= Q

{

−
1
∫

0
ρ(τ )

[

1
∫

t

Ae−(s−τ)A (f(s)− f(τ )) ds

]

dτ

+
1
∫

0
ρ(τ )

[(

e−(1−τ)A − e−(t−τ)A
)

f(τ )
]

dτ + Aϕ

}

.

(12)
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Then, by using assumption (4), Lemmas (2.1) and (2.2), the definition of Cα
1 (H)-

norm, we obtain

‖Au(1)‖H ≤ M

{

1
∫

0
|ρ(τ )|

[

1
∫

t

‖f‖Cα
1 (H)

(1−t)α(s−t)1−α ds

]

dτ

+2‖f‖Cα
1 (H)

1
∫

0
|ρ(τ )| dτ + ‖Aϕ‖H

}

≤ M
(

1
α
‖f‖Cα

1 (H) + ‖Aϕ‖H

)

.

(13)

Combining (11) and (13), we have

‖Au‖C(H) ≤ M

(

1
α
‖f‖Cα

1 (H) + ‖Aϕ‖H

)

. (14)

Now, let us estimate

sup
0≤t<t+τ≤1

(
1− t

τ
)α ‖Au(t+ τ )− Au(t)‖H .

There are two cases. First case is 1− t ≤ 2τ. From (14), it follows that

‖Au(t+ τ )− Au(t)‖H ≤ M(
τ

1− t
)α
(

1
α
‖f‖Cα

1 (H) + ‖Aϕ‖H

)

. (15)

Second case is 1− t > 2τ. Identity (10) yields

Au(t+ τ )− Au(t) =

5
∑

i=1

Ki(t),

where

K1(t) =
(

e−(1−t−τ)A − e−(1−t)A
)

Au(1),

K2(t) =
1
∫

t+2τ
A
[

e−(s−t)A − e−(s−t−τ)A
]

[f(s)− f(t)] ds,

K3(t) =
t+2τ
∫

t

Ae−(s−t)A [f(s)− f(t)] ds,

K4(t) = −
t+2τ
∫

t+τ

Ae−(s−t−τ)A [f(s)− f(t+ τ )] ds,

K5(t) =
[

e−(1−t−τ)A − I
]

f(t+ τ )−
[

e−(1−t)A − I
]

f(t)

+
[

e−(1−t−τ)A − e−τA
]

(f(t+ τ )− f(t)) .
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By using Lemma (2.1), inequality (13) and the definition ofCα
1 (H)-norm, it can

be showed that

‖K1(t)‖H ≤
∥

∥e−(1−t−τ)A − e−(1−t)A
∥

∥

H→H
‖Au(1)‖H

≤ M τα

(1−t)α

(

1
α
‖f‖Cα

1 (H) + ‖Aϕ‖H

)

and

‖K2(t)‖H ≤
1
∫

t+2τ

∥

∥A
[

e−(s−t)A − e−(s−t−τ)A
]∥

∥

H→H
‖f(s)− f(t)‖H ds

≤ 2−1+ατα

(1−t)α(1−α) ‖f‖Cα
1 (H) .

In the similar manner, we have

‖K3(t)‖H ≤ 2ατα
(1−t)αα ‖f‖Cα

1 (H) ,

‖K4(t)‖H ≤ 2ατα
(1−t)αα ‖f‖Cα

1 (H) .

By using triangle inequality and the definition of corresponding norms, we get

‖K5(t)‖H ≤ 2 ‖f(t+ τ )‖H + 2‖f(t)‖H + 2‖f(t+ τ )‖H + 2‖f(t)‖H
≤ 8‖f‖C(H) ≤ M ‖f‖Cα

1 (H) .

Combining estimates for‖Ki(t)‖H , i = 1,2,3,4,5, we have

(1− t)α ‖Au(t+ τ )− Au(t)‖H
τα

≤ M

(

1
α(1− α)

‖f‖Cα
1 (H) + ‖Aϕ‖H

)

.

Thus,

sup
0≤t<t+τ≤1

(
1− t

τ
)α ‖Au(t+ τ )−Au(t)‖H

≤ M

(

1
α(1− α)

‖f‖Cα
1 (H) + ‖Aϕ‖H

)

.

Therefore,

‖Au‖Cα
1 (H) ≤ M

(

1
α(1− α)

‖f‖Cα
1 (H) + ‖Aϕ‖H

)

. (16)

Finally, by using equation (1), triangle inequality and estimate (16), we get

∥

∥u′
∥

∥

Cα
1 (H)

≤ M

(

1
α(1− α)

‖f‖Cα
1 (H) + ‖Aϕ‖H

)

. (17)
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3 Applications to BVPs

Now, we will apply abstract results of previous section to study on well-posedness
of three BVPs.

Let usσ is a given positive number, and

a : (0,1) → R,ϕ : [0,1] → R, f : (0,1) × (0,1) → R

are given smooth functions andϕ ∈ L2 [0,1]. Moreover,∀x ∈ Ω, a(x) ≥ a0 > 0.
First, we consider boundary value problem for one dimensional parabolic equa-

tion with integral type nonlocal condition






























ut(x, t) + (a(x)ux(x, t))x − σu(x, t) = f(x, t),

0 < t < 1,0 < x < 1,

u(x,1) =
1
∫

0
ρ(s)u(x, s)ds+ ϕ(x), x ∈ [0,1] ,

ux(0, t) = ux(1, t), u(0, t) = u(1, t), 0 ≤ t ≤ 1.

(18)

Notice that the differential expression

Axv = − (a(x)vx(x))x + σv(x) (19)

defines SAPD operatorAx with domain

D(Ax) = {v, vx, vxx ∈ L2 [0,1] : vx(0) = vx(1), v(0) = v(1)} .

This allows us to reduce the nonlocal BVP (18) to the nonlocalBVP (1), (4) in a
Hilbert spaceH = L2 [0,1] with a SAPD operatorAx derived by (19). Therefore,
it can be formulated the following statement on well-posedness of reverse problem
(18).

Theorem 3.1.Suppose thatϕ ∈ W 2
2 (Ω), f ∈ Cα

1 (L2 [0,1]) and assumption (5) is
valid. Then, for solution of BVP (18) the following stability estimate

‖ut‖Cα
1 (L2[0,1])

+ ‖u‖Cα
1 (W 2

2 ([0,1]))

≤ M

(

1
α(1− α)

‖f‖Cα
1 (L2[0,1])

+ ‖ϕ‖W 2
2 ([0,1])

)

(20)

holds, where the constantM does not depend onf andϕ.

Let Ω = (0,1)n ⊂ Rn is unit open cube with boundaryS, Ω = S ∪ Ω and

ar : Ω → R,ϕ : Ω → R, f : (0,1) × Ω → R
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18 C. Ashyralyyev

are given smooth functions. Moreover,∀x ∈ Ω, ar(x) ≥ a0 > 0, σ is given
positive number.

Denote byL2(Ω) andW 2
2 (Ω) the Hilbert spaces of all integrable functions

v(x), defined onΩ, equipped with the corresponding norms

‖v‖L2(Ω) =

{

∫

x∈Ω
|v(x)|2 dx1 . . . dxn

} 1
2

,

‖v‖W 2
2 (Ω) =

{

∫

x∈Ω

(

|v(x)|2 +
n
∑

i=1

n
∑

j=1

∣

∣vxixj
(x)
∣

∣

2

)

dx1 . . . dxn

} 1
2

.

Second, we consider BVP for multidimensional parabolic equation with Dirich-
let boundary condition



































ut(x, t) +
n
∑

r=1
(ar(x)uxr(x, t))xr

− σu(x, t) = f(x, t),

x = (x1, x2, ..., xn) ∈ Ω,0 < t < 1,

u(x,1) =
1
∫

0
ρ(s)u(x, s)ds+ ϕ(x), x ∈ Ω,

u(x, t) = 0, x ∈ S,0 ≤ t ≤ 1.

(21)

Denote by

Axv = −

n
∑

r=1

(ar(x)vxr)xr + σv (22)

differential expression of multidimensional parabolic equation of (21). It defines
a SAPD operatorAx acting onL2(Ω) with the domain [13]

D(Ax) =
{

v(x) ∈ W 2
2 (Ω), v = 0 onS

}

.

So, from abstract Theorem 2.1 it can be concluded statement on well-posedness of
multidimensional reverse parabolic problem (21).

Theorem 3.2.Letϕ ∈ W 2
2 (Ω), f ∈ Cα

1 (L2(Ω)) and suppose that assumption (5)
is valid. Then, for solution of multidimensional BVP (21) the following stability
estimate

‖ut‖Cα
1 (L2(Ω)) + ‖u‖Cα

1 (W 2
2 (Ω))

≤ M

(

1
α(1− α)

‖f‖Cα
1 (L2(Ω)) + ‖ϕ‖W 2

2 (Ω)

)

(23)

is fulfilled, where the constantM does not depend onf andϕ.
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Third, we consider BVP for multidimensional parabolic equation with Neu-
mann boundary condition



































ut(x, t) +
n
∑

r=1
(ar(x)uxr(x, t))xr

− σu(x, t) = f(x, t),

x = (x1, x2, ..., xn) ∈ Ω,0 < t < 1;

u(x,1) =
1
∫

0
ρ(s)u(x, s)ds+ ϕ(x), x ∈ Ω,

∂u(x,t)
∂−→n

= 0, x ∈ S,0 ≤ t ≤ 1.

(24)

Differential expression (22) defines a SAPD operatorAx acting onL2(Ω) with the
domainD(Ax)=

{

u(x) ∈ W 2
2 (Ω), u = 0 onS

}

([13]). Therefore, abstract Theo-
rem 2.1 implies the well-posedness of reverse parabolic problem (24).

Theorem 3.3.Suppose thatϕ ∈ W 2
2 (Ω), f ∈ Cα

1 (L2(Ω)) and assumption (5) is
valid. Then, for solution of multidimensional BVP (24) the stability estimate (23)
is valid, where the constantM is independent fromf andϕ.

4 Conclusion

In the present paper, we discuss stability estimates for thesolution of reverse
parabolic problem with integral condition. Abstract results are applied to three
BVPs for multidimensional parabolic differential equation with integral boundary
condition. Theorems on well-posedness of these BVPs are presented.
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