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Well-posedness of boundary value problems for
reverse parabolic equation with integral condition
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Abstract. Reverse parabolic equation with integral condition is adered. Well-posedness
of reverse parabolic problem in the Holder space is provezkr€ive stability estimates
for solution of three boundary value problems (BVPs) to reggparabolic equation with
integral condition are established.
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1 Introduction

Well-posedness of nonclassical BVPs for parabolic difiéed equations has been
studied extensively by many researchers (see, e.g., [14115] and bibliography
therein).

Let H be Hilbertspace and : H — H be self-adjoint positive definite (SAPD)
operator such thatt > 41 for identity operator : H — H and some positive
numbers. In the paper [5], well-posedness of the reverse parabuobiclem

du(t)
dt

— Au(t) = f(£),0<t <1, @)

with multipoint nonlocal condition

p

u(l) = aru(f
(1) kgl ku(Ok) + o, @)

0<t<th<..<0,<1

was established in in the space of smooth functions. In egipdins, coercivity
estimates for the solution of parabolic differential eduag were obtained. Well-
posedness of problem (1), (2) was established under thenaisn

Unauthentifiziert | Heruntergeladen 17.09.19 10:26 UTC



12 C. Ashyralyyev

In the papers [6, 8], stable finite difference schemes foafh@oximate solution
of the reverse multidimensional parabolic differentialiation with various multi-
point boundary conditions are proposed. Coercive stglaitimates for difference
schemes are obtained. In[1,7,9-11, 14, 15], differentidldifference problems
of determining the parameter in a parabolic equations weickexl.

In this work, we study reverse problem for parabolic equa(iy with integral
type nonlocal condition:

1
/p $)ds + . (4)
0

Suppose that a continuous real valued scalar fungtio@ under assumption:

1
/p(s) ds < 1. 5)
0

A functionw : [0,1] — H is said to be a solution of the problem (1), (4) if the
following three conditions are valid:

1. u(¢) is continuously differentiable of, 1].

2. Forv ¢ € [0,1] the element:(¢) belongs toD(A) and the functiomrAw(t) is
continuous oro, 1].

3. u(t) satisfies the equation (1) and the nonlocal condition (4).

Denote byC(H) andCY{'(H ), the Banach space of all continuous functions
v :[0,1] — H equipped with the suitable norms

[Vl gy = mavsosi<a [[o(®)]l

10llce m) = lI0lloem) + SUR<t<tr<1 (= 0 ot + 1) = 0(®)l -

Lemma 1.1.[3] Forevery0 < t < t+ 7 < 1land0 < g < 1, the following
inequalities

le™ g = 1[4, < 1,

— 7_'3
le™4 — et —M(t+:) y (6)
HA (67“‘ —e ) )HH%H s Mt(t+r)ﬁ

are fulfilled for some positivé/.
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Lemma 1.2.Suppose that the assumptid) biolds. Then, the operator

1

S=1I- /p(T)e(lT>AdT =I1-D
0

has a bounded inversg = S~ such that

1@l < M. (")
Proof. By using spectral representation [13] férand Cauchy inequality, we have

(=@, u) <l flull

< lem @l g Ml -l

< SUBb< o €™ - lulff; < e (0, u)
< A(u,u) .

Thus, from (5) it follows that

Herepo > 0.So0, there exists bounded invex@eand inequality (7) holds. m

2 Well-posedness of reverse parabolic problem

Theorem 2.1.Assume thatf) is valid, ¢ € D(A), f(t) € C{(H). Then, prob-
lem (1), (4) has unique solution and it is well-possedGif (H) and the coercive
estimate

1
4 + 14l < 366) (M + 27y Wz

is fulfilled, whereM (§) is independent ap and f.

Proof. If (1) is given, then the solution of parabolic equation (1) is d=fiby

1
u(t) = ()~ [ (s)as (®)
t
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By using (8) and nonlocal condition (4), we have

1 1 1
u(l) = { p(T)e==DAdr (1) — { p(7) tf e~ 5"DAF(s)dsdT + .

By Lemma (2.1), we can obtain

:Q(O/ljp (s=7)A £( )dsd7+<p>. 9)

Hence, reverse problem (1), (4) has unique solution whickeiszed by formulas
(8) and (9). We have

104 4u(1) = [ Ae-94[§(s) — f(0)) ds 4o
t
)

+( —(1-t)A _ ) (t

for anyt € (0,1). Applying definition of Cf*(H )-norm and corresponding esti-
mates of Lemma (2.1), we have

L 1 flloa
[Au(®)|l; < [[Au(L)|; + f——i%TM+u+nwma

(s (11)
< [Au@)ly + (5 +2) HfHCf
From (9), it can be obtained
1
Au(l ( I p(r f (s=T)Af (s )dsdT—i—A<p>
1 1
=Q {—g’ p(7) tf Ae™ DA (f(s) = f(7)) ds] dr (12)
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Then, by using assumption (4), Lemmas (2.1) and (2.2), thieitlen of C{(H)-
norm, we obtain
1 1 Il ogm)
[Au(D)[ly < M S [lp(0)] | [ st dr
0 i

1
20 g [ lo(r)] dr + HA@HH} (13)

< M (21 llegm + I14¢lx) -
Combining (11) and (13), we have
1
I4ul iy < (3 Wlgm + Vel ). (14)
Now, let us estimate

1-t.,
sup  (—— ) [[Au(t +7) — Au(t)|| -
o<t<t+r<1 T

There are two cases. First case is 1 < 27. From (14), it follows that

T 1
Jutt+ ) = Au®lly < M) (5 U legn + 140l ) - 09

Second case is4 ¢ > 27. Identity (10) yields
5

Ault +7) — Au(t) = Y Ki(t),

i=1

where
Kl(t) _ (6—(1—t—r)A _ e—(l—t)A) Au(l),

"Ae DA [f(s) — f(1)] ds,

A
—~
~+
~—
I
b
“t\l\)

t+27
Kat) = — [ Ae”6TDA[f(s) = f(t + 7)) ds,

t+1

K(t) = [e=0=t=04 1] f(t +7) — =004 — 1] (1)
T (e A=A — e A] (£t 4 7) — £(1).
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By using Lemma (2.1), inequality (13) and the definition(f(H )-norm, it can
be showed that

IE(t) < [Jle A — @A Au()
< M (21 flepm + 140l

and

[K2(8) [l < f [Afem 704 —emtmmAY () = F(@)l] g ds

L t+27
2 ltara
< e e

In the similar manner, we have

I3l < e 1l

1KaO i < o Il op o

By using triangle inequality and the definition of corres@img norms, we get

1Ks(t)|lg <2 [If(t+7)llg +20F O g+ 21 FE+ ) g + 2 F Ol
<8 fllo < M flleo

Combining estimates fdf&;(t)| ;5 .4 = 1,2,3,4,5, we have
(- D Au(t+7) = Aul®)lly _ 5, (

g + 146l )

T a(l—a)
Thus,
1-t¢,
sup  ( ) [ Au(t + 7) — Au(t)||
o<t<t+r<i T
1
=M <m 1 ll ey + ||A90|H> :
Therefore,
1
l4ulcpn < M (g Wlegon + 140l ). 19)
Finally, by using equation (1), triangle inequality andrstte (16), we get
1
!/
Il cpn < M (g Mleen + 1elln) - aD)
O
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3 Applications to BVPs

Now, we will apply abstract results of previous section taigton well-posedness
of three BVPs.
Let usc is a given positive number, and

a:(0,1) = R,¢:[0,1] = R, f:(0,1) x (0,1) = R

are given smooth functions agde L; [0, 1]. Moreoveryz € Q, a(x) > ag > 0.
First, we consider boundary value problem for one dimeraiparabolic equa-
tion with integral type nonlocal condition

u(z,t) + (a(@)ue(z,1)), — ou(x,t) = f(z,1),
O<t<10<z<],

u(z,1) = flp(s)u(x,s)ds +¢(z), z € [0,1], (18)
uz(0,1) = Scx(l,t), uw(0,t) =u(l,¢), 0<t < 1.
Notice that the differential expression
A% = — (a(2)vg()), + 00 (2) (19)

defines SAPD operatot® with domain
D(A*) = {v, vz, V42 € L2[0,1] : v,(0) = v,(1), v(0) =v(1)}.

This allows us to reduce the nonlocal BVP (18) to the nonl@&&P (1), (4) in a
Hilbert spaced = L, [0, 1] with a SAPD operatorl” derived by (19). Therefore,
it can be formulated the following statement on well-posesof reverse problem
(18).

Theorem 3.1.Suppose thap € W2(Q), f € C¢(L,[0,1]) and assumptions) is
valid. Then, for solution of BVPLE) the following stability estimate

lutllco(zyo,2) + lullcs w20

1
< M <m “f“Cf‘(Lz[O,l]) T |<’0|W22([071])> (20)

holds, where the constantf does not depend gfiand .

LetQ = (0,1)" C R™is unit open cube with boundary;, Q = S U Q and

a:Q—=Rp: Q=R f:(01)xQ—R
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are given smooth functions. Moreovéty € Q, a,.(z) > ap > 0, o is given
positive number.

Denote byL,(Q) and W2(Q) the Hilbert spaces of all integrable functions
v(z), defined onQ, equipped with the corresponding norms

1
2
1ol @) {f [o(z)Pdes ... dz n} 7
reQ
1
2
“”HWZZ@) = { fi (U( | + Z Z |vx z; ( | ) dxl...d:rn} .

zeQ i=1j=

Second, we consider BVP for multidimensional parabolicagigm with Dirich-
let boundary condition

up(x,t) + il (ar(2)us, (2,1)), —ou(z,t) = f(z,1),

T = (xl,xz,...,xn) ceQ0<t<,

_ (21)
fp u(z, s)ds + (z), © € Q,
u(z, )—vaGS,OStSL
Denote by
Atv =~ i(ar(l‘)vxr)xr +ov (22)

r=1
differential expression of multidimensional paraboliciation of (21). It defines
a SAPD operatorl” acting onL(Q) with the domain [13]

= {v(z ) € Wi( Q), v=00nS}.

So, from abstract Theorem 2.1 it can be concluded statememéth-posedness of
multidimensional reverse parabolic problem (21).

Theorem 3.2.Letyp € W2(Q), f € C(L2(Q)) and suppose that assumptids) (
is valid. Then, for solution of multidimensional BVPL) the following stability
estimate

luellopz,@) + l1ullegparza@)

1
< M (o Wz am) + Ielluza) @)

is fulfilled, where the constat/ does not depend ofiand .
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Third, we consider BVP for multidimensional parabolic etia with Neu-

mann boundary condition

wlat)+ X (ar(@ur, (2.0)),, - oulat) = f(@.0)
x = (xl,x27.. zn) €Q,0<t<1;

fp u(z,s)ds + p(z), = € Q,

%ﬂ:Qxe&Ogtgl.

(24)

Differential expressmn (22) defines a SAPD operatdracting onL,(Q) with the
domainD(A%)={u(x) € WZ(Q), u=0o0nS} ([13]). Therefore, abstract Theo-

rem2.1 |mpI|es the well-posedness of reverse paraboliol@no (24).

Theorem 3.3.Suppose thap € W2(Q), f € C¢(L2(Q)) and assumptions) is
valid. Then, for solution of multidimensional BVR4] the stability estimate23)

is valid, where the constant/ is independent fronf and .

4 Conclusion

In the present paper, we discuss stability estimates forstieation of reverse
parabolic problem with integral condition. Abstract reésudre applied to three
BVPs for multidimensional parabolic differential equatiwith integral boundary
condition. Theorems on well-posedness of these BVPs asepred.
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