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Abstract. The inverse problem for the multidimensional elliptic equation with Neumann-Dirichlet conditions are presented.
For the approximate solution of this inverse problem the first and second order of accuracy in t and in space variables difference
schemes are constructed. The stability, almost coercive stability and coercive stability estimates for the solution of these
difference schemes are obtained. The algorithm for approximate solution is tested in a two-dimensional inverse problem.
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INTRODUCTION

Theory and methods of solutions of the inverse problems for partial differential equations have been extensively
investigated by many researchers (see [1–24] and the bibliography therein).

In the present paper, we consider the inverse problem of finding functions u(t,x) and p(x) for multidimensional
elliptic equation with following Dirichlet-Neumann boundary conditions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−utt(t,x)−
n
∑

r=1
(ar(x)uxr)xr +σu(t,x) = f (t,x)+ p(x), x = (x1, · · · ,xn) ∈ Ω, 0 < t < T,

u(0,x) = ϕ(x), u(T,x) = ψ(x), u(λ ,x) = ξ (x), x ∈ Ω,

∂u(t,x)
∂−→n = 0, x ∈ S1, u(t,x) = 0, x ∈ S2,0 ≤ t ≤ T.

(1)

Here, 0 < λ < T and σ > 0 are given numbers, ar(x), (x ∈ Ω), ϕ(x),ψ(x),ξ (x) (x ∈ Ω), and f (t,x) (t ∈ (0,T ), x ∈ Ω)
are given smooth functions and ar(x)≥ a> 0 (x∈Ω), and Ω=(0, �)×·· ·×(0, �) is the open cube in the n-dimensional
Euclidean space with boundary S = S1 ∪S2, Ω = Ω∪S.

The well-posedness and approximation of the inverse problem for the multidimensional elliptic equation with
Dirichlet conditions were investigated in [13]. Approximation of the inverse problem for multidimensional elliptic
equation with Neumann conditions and the well-posedness of difference problems were investigated in [14]. A third
and a fourth order of accuracy difference schemes for these problems were constructed in [15, 16].

In the present study, we construct a first and a second order of accuracy in t and in space variables difference schemes
for the approximate solution of inverse problem (1) with Neumann-Dirichlet boundary conditions. We establish the
stability, the almost coercive stability and the coercive stability estimates for the solution of these difference schemes.
The test example for the two-dimensional inverse problem is given.

DIFFERENCE SCHEMES

The discretization of problem (1) is carried out in two steps. Define the sets{
Ω̃h = {xm = (h1m1, · · · ,hnmn); m = (m1, · · · ,mn), mq = 0, · · · , Mq, hqMq = �, q = 1, · · · , n},
Ωh = Ω̃h ∩Ω, S1

h = Ω̃h ∩S1, S2
h = Ω̃h ∩S2.
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Introduce the Hilbert spaces L2h = L2(Ω̃h) and W 2
2h = W 2

2 (Ω̃h) of grid functions ρh(x) = {ρ(h1m1, · · · ,hnmn)}
defined on Ω̃h equipped with the norms

∥∥∥ρh
∥∥∥

L2h
=

⎛⎝ ∑
x∈Ω̃h

|ρh|2h1 · · ·hn

⎞⎠1/2

,

∥∥∥ρh
∥∥∥

W 2
2h

=
∥∥∥ρh

∥∥∥
L2h

+

⎛⎝ ∑
x∈Ω̃h

n

∑
q=1

∣∣∣(ρh)xq

∣∣∣2 h1 · · ·hn

⎞⎠1/2

+

⎛⎝ ∑
x∈Ω̃h

n

∑
q=1

∣∣∣(ρh(x))xqxq, mq

∣∣∣2 h1 · · ·hn

⎞⎠1/2

.

To the differential operator Ax, assign the difference operator Ax
h , defined by the formula,

Ax
huh =−

n

∑
q=1

(
aq(x)uh

xq

)
xq,mq

+σuh
xq

(2)

acting in the space of grid functions uh(x) satisfying the conditions Dhuh(x) = 0 for all x ∈ S1
h and uh(x) = 0 for all

x ∈ S2
h. Here, Dhuh(x) is an approximation of ∂u

∂−→n . It is known that [25, 26] Ax
h is a self-adjoint positive define operator

in L2

(
Ω̃h

)
.

In the first step, by using Ax
h, for obtaining uh(t,x) functions, we arrive at problem⎧⎪⎨⎪⎩

− d2uh(t,x)
dt2 +Ax

huh(t,x) = f h(t,x)+ ph(x), 0 < t < T, x ∈ Ωh,

uh(0,x) = ϕh(x), uh(λ ,x) = ξ h(x), uh(T,x) = ψh(x), x ∈ Ω̃h.

(3)

In the second step, applying the approximation formula

u(λ ,x) = u
([

λ
τ

]
τ,x
)
+O(τ)

for uh(λ ,x) = ξ h(x), we get the first order of accuracy difference scheme⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−τ−2(uh
k+1(x)−2uh

k(x)+uh
k−1(x))+Ax

huh
k(x) = θ h

k (x)+ ph(x),

θ h
k (x) = f h(tk,x), tk = kτ, 1 ≤ k ≤ N −1, x ∈ Ωh,

uh
0(x) = ϕh(x), uh

N(x) = ψh(x), uh
l (x) = ξ h(x), x ∈ Ω̃h, Nτ = T.

(4)

Here, l =
[

λ
τ

]
, [·] is a notation for greatest integer function.

By using the approximation formula

uh(λ ,x) = uh(lτ,x)+
(

λ
τ
− l
)
(uh(lτ + τ,x)−uh(lτ,x))+O(τ2)
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for uh(λ ,x) = ξ h(x), we get the second order of accuracy difference scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−τ−2(uh
k+1(x)−2uh

k(x)+uh
k−1(x))+Ax

huh
k(x) = θ h

k (x)+ ph(x),

θ h
k (x) = f h(tk,x), tk = kτ, 1 ≤ k ≤ N −1, x ∈ Ω̃h,

uh
0(x) = ϕh(x), uh

N(x) = ψh(x),

uh
l (x)+

(
λ
τ − l

)(
uh

l+1(x)−uh
l (x)

)
= ξ h(x), x ∈ Ω̃h, Nτ = T.

(5)

Let H be the Hilbert space. To formulate our result on well-posedness of difference schemes, we give definition

of C([0,T ]τ ,H) and C α ,α
0T ([0,T ]τ ,H) which are the linear spaces of mesh functions θ τ = {θk}N−1

1 with values in the
Hilbert space H. We denote C([0,T ]τ ,H) normed space with the norm∥∥∥{θk}N−1

1

∥∥∥
C([0,T ]τ ,H)

= max
1≤k≤N−1

‖θk‖H ,

and C α,α
0T ([0,T ]τ ,H) normed space with the norm∥∥∥{θk}N−1

1

∥∥∥
C α ,α

0T ([0,T ]τ ,H)
=
∥∥∥{θk}N−1

1

∥∥∥
C([0,T ]τ ,H)

+ sup
1≤k<k+n≤N−1

(kτ +nτ)α(T − kτ)α‖θk+n −θk‖H

(nτ)α .

Theorem 1. Let τ and |h|=
√

h2
1 + · · ·+h2

n be sufficiently small positive numbers. Then, the solutions
({

uh
k

}N−1

1
, ph
)

of difference schemes (4) and (5) obey the following stability estimates:∥∥∥∥{uh
k

}N−1

1

∥∥∥∥
C([0,T ]τ ,L2h)

≤ M(δ )
[∥∥∥ϕh

∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
L2h

+
∥∥∥ξ h

∥∥∥
L2h

+

∥∥∥∥{ f h
k

}N−1

1

∥∥∥∥
C([0,T ]τ ,L2h)

]
,

∥∥∥ph
∥∥∥

L2h
≤ M(δ )

[∥∥∥ϕh
∥∥∥

W 2
2h

+
∥∥∥ψh

∥∥∥
W 2

2h

+
∥∥∥ξ h

∥∥∥
W 2

2h

+
1

α(1−α)

∥∥∥∥{ f h
k

}N−1

1

∥∥∥∥
C α,α

0T ([0,T ]τ ,L2h)

]
,

where M(δ ) is independent of τ,α,h,ϕh,ψh, ξ h, and
{

f h
k

}N−1

1
.

Theorem 2. Let τ and |h| =
√

h2
1 + · · ·+h2

n be sufficiently small positive numbers. Then, the solutions of difference
schemes (4) and (5) obey the following almost coercive stability estimate:∥∥∥∥∥∥

{
uh

k+1 −2uh
k +uh

k−1

τ2
)

}N−1

1

∥∥∥∥∥∥
C([0,T ]τ ,L2h)

+
∥∥∥ph
∥∥∥

L2h

≤ M(δ )

(∥∥∥ϕh
∥∥∥

W 2
2h

+
∥∥∥ψh

∥∥∥
W 2

2h

+
∥∥∥ξ h

∥∥∥
W 2

2h

+ ln

(
1

τ +h

)∥∥∥∥{ f h
k

}N−1

1

∥∥∥∥
C([0,T ]τ ,L2h)

)
,

where M(δ ) does not depend on τ,α ,h,ϕh,ψh, ξ h, and
{

f h
k

}N−1

1
.

Theorem 3. Let τ and |h| =
√

h2
1 + · · ·+h2

n be sufficiently small positive numbers. Then, the solutions of difference
schemes (4) and (5) obey the following coercive stability estimate:∥∥∥∥∥∥

{
uh

k+1 −2uh
k +uh

k−1

τ2
)

}N−1

1

∥∥∥∥∥∥
C α ,α

0T ([0,T ]τ ,L2h)

+

∥∥∥∥{uh
k

}N−1

1

∥∥∥∥
C α ,α

0T ([0,T ]τ ,W 2
2h)

+
∥∥∥ph
∥∥∥

L2h
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≤ M(δ )

[
1

α(1−α)

∥∥∥∥{ f h
k

}N−1

1

∥∥∥∥
C α ,α

0T ([0,T ]τ ,L2h)

+
∥∥∥ϕh

∥∥∥
W 2

2h

+
∥∥∥ψh

∥∥∥
W 2

2h

+
∥∥∥ξ h

∥∥∥
W 2

2h

]
,

where M(δ ) is independent of τ,α,h,ϕh,ψh, ξ h, and
{

f h
k

}N−1

1
.

The proofs of Theorems 1-3 are based on representation formulas for solutions, the symmetry property of operator
Ax

h in L2h, and the following theorem on the coercivity estimate for the solution of the elliptic difference problem in
L2h.

Theorem 4. [27] For the solution of the elliptic difference problem{
Ax

huh(x) = ωh(x), x ∈ Ω̃h,

Dhuh(x) = 0, x ∈ S1
h,u

h(x) = 0, x ∈ S2
h,

the following coercivity inequality holds:

n

∑
q=1

∥∥∥(uh)xq,xq,mq

∥∥∥
L2h

≤ M||ωh||L2h ,

where M does not depend on h and ωh.

NUMERICAL RESULTS

For the numerical result, we consider the inverse problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂ 2u(t,x)
∂ t2 − ∂

∂x

(
(2+ cosx) ∂u(t,x)

∂x

)
+u(t,x) = (3cos(x)+ cos(2x)+1)t

+(2cos(x)+ cos(2x))exp(−t),0 < x < π,0 < t < T,

u(0,x) = 2(cos(x)+1), u(T,x) = (exp(−T )+T +1)(cos(x)+1), 0 ≤ x ≤ π,

u(λ ,x) = (exp(−λ )+λ +1)(cos(x)+1), 0 ≤ x ≤ π, λ = 4T
5 ,

ux(t,0) = 0, u(t,π) = 0, 0 ≤ t ≤ T,

(6)

for the elliptic equation. It is easy to see that u(t,x) = (exp(−t)+ t +1)(cos(x)+1) and p(x) = 3cos(x)+cos(2x)+1
are the exact solutions of (6).

Now, we give the results of the numerical analysis using by MATLAB programs. The numerical solutions are
recorded for different values of N and M. Tables 1-2 give the error analysis between the exact solution and solutions
derived by difference schemes. Tables 1-2 are constructed for N = M = 20, 40, 80 and 160. Hence, the second order
of accuracy difference scheme is more accurate comparing with the first order of accuracy difference scheme. Table 1
gives the error analysis between the exact solution p and solutions derived by difference schemes in second stage of
algorithm.

TABLE 1. Error analysis for p

N=M=20 N=M=40 N=M=80 N=M=160

Difference scheme (4) 0.46799 0.34451 0.24769 0.17645

Difference scheme (5) 0.066127 0.012292 0.0023387 4.61×10−4

Table 2 gives the error analysis between the exact solution u and solutions derived by first order and second order
accuracy of difference schemes.
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TABLE 2. Error analysis for u

N=M=20 N=M=40 N=M=80 N=M=160

Difference scheme (4) 0.13789 0.062908 0.030101 0.014731

Difference scheme (5) 0.01591 0.0018966 2.35×10−4 3.01×10−5

CONCLUSION

In this paper, the inverse problem for the multidimensional elliptic equation with Dirichlet-Neumann conditions is
considered. The first and second order of accuracy difference schemes for approximate solutions of this problem
are presented. Theorems on the stability, almost coercive stability and coercive stability estimates for solutions of
difference schemes for the multidimensional elliptic equation are proved. Numerical results in a two-dimensional case
are given. As it can be seen from Tables 1-2, the second order of accuracy difference scheme is more accurate than the
first order of accuracy difference scheme.

ACKNOWLEDGMENTS

The authors are grateful to Prof. Allaberen Ashyralyev (Fatih University, Turkey) for his comments and suggestions
to improve the quality of the paper.

REFERENCES

1. A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel
Dekker, New York, 2000.

2. A. A. Samarskii, and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics, in:
Inverse and Ill-Posed Problems Series, Walter de Gruyter, Berlin, 2007.

3. V. V. Soloviev, Zh. Vychil. Mat.i Mat. Fiziki 44, 862-871 (2004).
4. D. G. Orlovskii, Differential Equations 44, 124-134 (2008).
5. D. Orlovsky, and S. Piskarev, J. Inverse Ill-Posed Probl. 17, 765-782 (2009).
6. A. Ashyralyev, and A. S. Erdogan, Vestnik of Odessa National University, Mathematics and Mechanics 15, 129-135 (2010).
7. A. Ashyralyev, and A. S. Erdogan, Int. J. Math. Comput. 11, 73-81 (2011).
8. A. Ashyralyev, A. S. Erdogan, and O. Demirdag, Appl. Numer. Math. 62, 1672-1683 (2012).
9. A. S. Erdogan, and H. Uygun, Abstr. Appl. Anal. 2012, 1-26 (2012), Article ID 276080.
10. N. Topsakal, and R. Amirov, Math. Phys. Anal. Geom. 13, 29-46 (2008)
11. A. Ashyralyev, and A. S. Erdogan, Appl. Math. Comput. 226, 212-228 (2014).
12. C. Ashyralyyev, A. Dural, and Y. Sözen, AIP Conference Proceedings 1470, 102-105 (2012).
13. C. Ashyralyyev, and M. Dedeturk, Contemporary Analysis and Applied Mathematics 1, 132-155 (2013).
14. C. Ashyralyyev, and M. Dedeturk, Abstr. Appl. Anal. 2013, 1-11 (2013), Article ID 548017.
15. C. Ashyralyyev, Bound. Value Probl. 2014, 1-23 (2014), doi: 10.1186/1687-2770-2014-5.
16. C. Ashyralyyev, High order approximation of the inverse elliptic problem with Dirichlet-Neumann conditions, Filomat(in

press).
17. A. Ashyralyev, and M. Urun, Contemporary Analysis and Applied Mathematics 1, 156-166 (2013).
18. A. Ashyralyev, and C. Ashyralyyev, Nonlinear Anal. Model. Control 19, 350-366 (2014).
19. D. Orlovsky, and S. Piskarev, Contemporary Analysis and Applied Mathematics 1, 118-131 (2013).
20. A. Ashyralyev, Ukrainian Math. J. 62, 1397-1408 (2011).
21. A. Ashyralyev, and Y. A. Sharifov, Electron. J. Differential Equations 80 (2013).
22. Y. S. Eidelman, Math. Notes 49, 535-540 (1991).
23. V.G. Romanov, Dokl. Math. 84, 833-836 (2011).
24. K. Sakamoto, and M. Yamamoto, Appl. Anal. 88, 735-748 (2009).
25. S. G. Krein, Linear Differential Equations in Banach Space, Nauka, Moscow, 1966.
26. A. Ashyralyev, and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations, Birkhäuser Verlag, Basel,

Boston, Berlin, 2004.
27. P. E. Sobolevskii, Difference Methods for the Approximate Solution of Differential Equations, Voronezh State University

Press, Voronezh, 1975.

29 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

79.123.242.228 On: Fri, 22 Aug 2014 07:53:10


