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Inverse Neumann problem for an equation of elliptic type
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Abstract. Inverse problem for an elliptic differential equation with Neumann conditions is considered. Stability and coercive
stability estimates for the solution of inverse problem with the overdetermination are obtained. The first and second order of
accuracy difference schemes are presented. Stability and coercive stability inequalities for these difference schemes are given.
In application, inverse problem for the multidimensional elliptic equation is studied. The first and second order of accuracy
difference schemes for the multidimensional inverse problem are presented. Well-posedness of both difference problems are
established. The results are supported by a numerical example for the two-dimensional elliptic equation.
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INTRODUCTION

It is known that many problems in various branches of science lead to inverse problems for partial differential
equations (see,[1, 2]). Theory and methods of solutions of inverse problems for partial differential equations have
been extensively studied by several researchers (see [1–33] and the literature cited therein).

Consider the inverse problem of finding a function u and an element p for an elliptic equation⎧⎪⎨⎪⎩
−utt(t)+Au(t) = f (t)+ pt,0 < t < T,

ut(0) = ϕ , ut(T ) = ψ,ut(λ ) = ξ ,0 < λ < T
(1)

in an arbitrary Hilbert space H with the self-adjoint positive definite operator A. Here, f (t) is a given smooth function,
ϕ,ψ, and ξ are given elements of H, λ is a known number.

In the present work, we obtain stability and coercive stability estimates for the solution of inverse problem (1)
and present the first and second order of accuracy difference schemes for its solution. Stability and coercive stability
inequalities for difference problems are established. In application, we consider the following inverse problem of
finding functions u(t,x) and p(x) for the multidimensional elliptic equation in [0,T ]×Ω,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−utt(t,x)−
n
∑

r=1
(ar(x)uxr)xr +δu(t,x) = f (t,x)+ p(x)t,

x = (x1, · · · ,xn) ∈ Ω, 0 < t < T,

ut(0,x) = ϕ(x),ut(T,x) = ψ(x),ut(λ ,x) = ξ (x),x ∈ Ω,

u(t,x) = 0, x ∈ S,0 ≤ t ≤ T.

(2)

Here, Ω=(0, �)×·· ·×(0, �) is the open cube in the n-dimensional Euclidean space with boundary S, Ω=Ω∪S, ar(x)
(x ∈ Ω), ϕ(x),ψ(x),ξ (x) (x ∈ Ω), and f (t,x)(t ∈ (0,T ),x ∈ Ω) are given smooth functions, 0 < λ < T and δ > 0 are
known numbers, ar(x)≥ a > 0 (x ∈ Ω).
The stability and coercive stability estimates for the solution of inverse problem (2) are obtained. The first and second
order of accuracy difference schemes for the approximate solution of problem (2) are presented. Well-posedness of
both difference problems are established. The results are supported by numerical example for the two-dimensional
elliptic equation.
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MAIN RESULTS

Let Cα,α
0T (H) be space obtained by completion of the space of all smooth H-valued functions ρ on [0,T ] with the norm

‖ρ‖Cα ,α
0T (H) = ‖ρ‖C(H) + sup

0≤t<t+τ≤T

(t + τ)α(T − t)α‖ρ(t + τ)−ρ(t)‖H

τα .

Assume that A is a self-adjoint positive definite operator.

Theorem 1. Suppose that ϕ ,ψ ,ξ ∈ D(A− 1
2 ), and f (t) ∈ Cα ,α

0T (H)(0 < α < 1). Then, for the solutions (u(t), p) of
problem (1) the following stability estimates hold:

‖u‖C(H) ≤ M
[∥∥∥A− 1

2 ϕ
∥∥∥

H
+
∥∥∥A− 1

2 ψ
∥∥∥

H
+
∥∥∥A− 1

2 ξ
∥∥∥

H
+‖ f‖C(H)

]
, (3)

∥∥A−1 p
∥∥

H ≤ M
[∥∥∥A− 1

2 ϕ
∥∥∥

H
+
∥∥∥A− 1

2 ψ
∥∥∥

H
+
∥∥∥A− 1

2 ξ
∥∥∥

H
+‖ f‖C(H)

]
, (4)

where M does not depend on α, ϕ ,ψ,ξ , and f (t).

Theorem 2. Assume that ϕ,ψ,ξ ∈ D(A
1
2 ), and f (t) ∈ Cα ,α

0T (H)(0 < α < 1). Then, for the solutions (u(t), p) of
problem (1) the following coercive inequality holds:

∥∥u′′
∥∥

Cα ,α
0T (H)

+‖Au‖Cα ,α
0T (H) +‖p‖H ≤ M

[
1

α(1−α)
‖ f‖Cα ,α

0T (H) +
∥∥∥A

1
2 ϕ

∥∥∥
H
+
∥∥∥A

1
2 ψ

∥∥∥
H
+
∥∥∥A

1
2 ξ

∥∥∥
H

]
, (5)

where M is independent of α , ϕ,ψ,ξ , and f (t).

Introduce the set of grid points {tk = kτ , 1 ≤ k ≤ N −1, Nτ = T} . Let l =
[

λ
τ

]
, [·] be the greatest integer function.

Applying the approximate formulas

ut(λ ) =
ul+1 −ul

τ
+o(τ),

ut(λ ) =
3ul+1 −4ul +ul−1

2τ
+

(
λ
τ
− l

)(
3ul+2 −4ul+1 +ul

2τ
− 3ul+1 −4ul +ul−1

2τ

)
+o(τ2)

for ut(λ ) = ξ , problem (1) is replaced by first order of accuracy difference scheme⎧⎪⎪⎨⎪⎪⎩
− uk+1−2uk+uk−1

τ2 +Auk = θk + ptk, θk = f (tk),
tk = kτ, 1 ≤ k ≤ N −1,

u1−u0
τ = ϕ, uN−uN−1

τ = ψ,
ul+1−ul

τ = ξ ,

(6)

and second order of accuracy difference scheme⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− uk+1−2uk+uk−1

τ2 +Auk = θk + ptk, θk = f (tk),
tk = kτ, 1 ≤ k ≤ N −1,

−3u0+4u1−u2
2τ = ϕ , 3uN−4uN−1+uN−2

2τ = ψ,
3ul+1−4ul+ul−1

2τ +
(

λ
τ − l

)(
3ul+2−4ul+1+ul

2τ − 3ul+1−4ul+ul−1
2τ

)
= ξ .

(7)

For finding a solution {uk}N−1
k=1 of difference problems (6) and (7), we apply the substitution

uk = vk +A−1 ptk, (8)
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where {vk}N
k=0 is the solution of auxiliary nonlocal boundary value difference problem. For {vk}N

k=0, we get, respec-
tively, the following first and second orders accuracy auxiliary nonlocal boundary value difference problems⎧⎨⎩

−τ−2(vk+1 −2vk + vk−1)+Avk = θk, 1 ≤ k ≤ N −1,

v1−v0
τ − vl+1−vl

τ = ϕ −ξ , vN−vN−1
τ − vl+1−vl

τ = ψ −ξ ,
(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−τ−2(vk+1 −2vk + vk−1)+Avk = θk, 1 ≤ k ≤ N −1,

−3v0+4v1−v2
2τ − 3vl+1−4vl+vl−1

2τ
−(λ

τ − l)
(

3vl+2−4vl+1+vl
2τ − 3vl+1−4vl+vl−1

2τ

)
= ϕ −ξ ,

3vN−4vN−1+vN−2
2τ − 3vl+1−4vl+vl−1

2τ
−
(

λ
τ − l

)(
3vl+2−4vl+1+vl

2τ − 3vl+1−4vl+vl−1
2τ

)
= ψ −ξ .

(10)

For finding unknown element p, we use formula

p = Aξ −Avt(tl). (11)

So, we will consider the following algorithm for solving of problems (6) and (7) which includes three stages. In the
first stage, we consider the auxiliary nonlocal boundary value difference problems (9), (10) and obtain {vk}N

k=0 .
In the second stage, we put k = l and find vt(tl). Then, using (11), we obtain p. In the third stage, we apply formula

(8) for obtaining the solution {uk}N−1
k=1 of difference problems (6), (7), respectively.

Note that C = 1
2 (τA+

√
4A+ τ2A2) is a self-adjoint positive definite operator and R = (I + τC)−1 which is defined

on the whole space H is a bounded operator (see [35]) . Here, I is the identity operator.

Theorem 3. Suppose that ϕ,ψ,ξ ∈ H and {θk}N−1
k=1 ∈Cα ,α

τ (H)(0 < α < 1) . Then, for the solutions
(
{uk}N−1

k=1 , p
)

of
difference problems (6) and (7) the following stability estimates∥∥∥{uk}N−1

k=1

∥∥∥
Cτ (H)

≤ M
[
‖ϕ‖H +‖ψ‖H +‖ξ‖H +

∥∥∥{θk}N−1
k=1

∥∥∥
Cτ (H)

]
, (12)

∥∥A−1 p
∥∥

H ≤ M
[
‖ϕ‖H +‖ψ‖H +‖ξ‖H +

∥∥∥{θk}N−1
k=1

∥∥∥
Cτ (H)

]
(13)

are satisfied, where M does not depend on τ,α, ϕ,ψ,ξ , and {θk}N−1
k=1 .

Here, Cτ(H) and Cα ,α
τ (H) are the spaces of all H-valued grid functions {θk}N−1

k=1 in the following norms accordingly∥∥∥{θk}N−1
k=1

∥∥∥
Cτ (H)

= max
1≤k≤N−1

‖θk‖H ,

∥∥∥{θk}N−1
k=1

∥∥∥
Cα ,α

τ (H)
=
∥∥∥{θk}N−1

k=1

∥∥∥
Cτ (H)

+ sup
1≤k<k+n≤N−1

(kτ +nτ)α(T − kτ)α‖θk+n −θk‖H

(nτ)α .

Theorem 4. Assume that ϕ,ψ,ξ ∈ D(C) and {θk}N−1
k=1 ∈Cα,α

τ (H)(0 < α < 1) . Then, for solutions
(
{uk}N−1

k=1 , p
)

of
difference problems (6) and (7) the coercive stability estimate∥∥∥{τ−2 (uk+1 −2uk +uk−1)

}N−1

k=1

∥∥∥
Cα ,α

τ (H)
+
∥∥∥{Auk}N−1

k=1

∥∥∥
Cα ,α

τ (H)
+‖p‖H (14)

≤ M
[
‖Cϕ‖H +‖Cψ‖H +‖Cξ‖H +

1

α (1−α)

∥∥∥{θk}N−1
k=1

∥∥∥
Cα ,α

τ (H)

]
is fulfilled, where M does not depend on τ,α, ϕ ,ψ,ξ , and {θk}N−1

k=1 .
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APPLICATION

Note that differential expression [34]

Axu(x) =−
n

∑
r=1

(ar(x)uxr(x))xr +δu(x) (15)

defines a self-adjoint positive definite operator Ax acting on L2(Ω) with the domain

D(Ax) =
{

u(x) ∈W 2
2 (Ω), u(x) = 0 on S

}
.

Let H be the Hilbert space L2(Ω). By using abstract Theorems 1 and 2, we get the following theorems about well-
posedness of problem (2).

Theorem 5. Assume that Ax is defined by formula (15), ϕ ,ξ ,ψ ∈ D
(
(Ax)−

1
2

)
, f ∈C(L2(Ω)). Then, for the solution

(u, p) of inverse boundary value problem (2), the stability estimates are satisfied:

‖u‖C(L2(Ω)) ≤ M
[∥∥∥(Ax)−

1
2 ϕ

∥∥∥
L2(Ω)

+
∥∥∥(Ax)−

1
2 ψ

∥∥∥
L2(Ω)

+
∥∥∥(Ax)−

1
2 ξ

∥∥∥
L2(Ω)

+‖ f‖C(L2(Ω))

]
,

∥∥(Ax)−1 p
∥∥

L2(Ω)
≤ M

[∥∥∥(Ax)−
1
2 ϕ

∥∥∥
L2(Ω)

+
∥∥∥(Ax)−

1
2 ψ

∥∥∥
L2(Ω)

+
∥∥∥(Ax)−

1
2 ξ

∥∥∥
L2(Ω)

+‖ f‖C(L2(Ω))

]
,

where M is independent of α ,ϕ(x),ξ (x),ψ(x), and f (t,x).

Theorem 6. Suppose that Ax is defined by formula (15), ϕ ,ψ ,ξ ∈ D
(
(Ax)

1
2

)
, f ∈ C(L2(Ω)). Then, for the solution

of inverse boundary value problem (2), coercive stability estimate∥∥u′′
∥∥

Cα ,α
0T (L2(Ω))

+‖u‖Cα ,α
0T (W 2

2 (Ω)) +‖p‖L2(Ω)

≤ M
[

1

α(1−α)
‖ f‖Cα,α

0T (L2(Ω)) +‖ϕ‖W 1
2 (Ω) +‖ψ‖W 1

2 (Ω) +‖ξ‖W 1
2 (Ω)

]
holds, where M is independent of α ,ϕ(x),ξ (x),ψ(x), and f (t,x).

We discretize problem (2) into two steps. In the first step, we define the grid spaces

Ω̃h = {x= xm =(h1m1, · · · ,hnmn);m=(m1, · · · ,mn),mr = 0, · · · ,Mr, hrMr = �,r = 1, · · · ,n},Ωh = Ω̃h∩Ω,Sh = Ω̃h∩S.

Denote difference operator by

Ax
huh =−

n

∑
r=1

(
ar(x)uh

xr

)
xr , jr

+δuh,

acting in the space of grid functions uh(x), satisfying the condition uh(x) = 0 for all x ∈ Sh. It is known that Ax
h is a

self-adjoint positive definite operator.

Let L2h = L2(Ω̃h) and W 2
2h =W 2

2 (Ω̃h) be spaces of the grid functions ρh(x) = {ρ(h1m1, · · · ,hnmn)} defined on Ω̃h,
equipped with the norms

‖ρ‖L2h
=

⎛⎝ ∑
x∈Ω̃h

|ρh(x)|2h1 · · ·hn

⎞⎠1/2

,

∥∥∥ρh
∥∥∥

W 2
2h

=
∥∥∥ρh

∥∥∥
L2h

+

⎛⎝ ∑
x∈Ω̃h

n

∑
r=1

∣∣∣ρh
xr
(x)

∣∣∣2 h1 · · ·hn

⎞⎠1/2

+

⎛⎝ ∑
x∈Ω̃h

n

∑
r=1

∣∣∣(ρh(x))xrxr , nr

∣∣∣2 h1 · · ·hn

⎞⎠1/2

.
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Applying Ax
h to (6) and (7), we arrive for uh(t,x) functions at auxiliary nonlocal boundary value problem for a

system of ordinary differential equations{
− d2uh(t,x)

dt2 +Ax
huh(t,x) = f h(t,x)+ ph(x)t, 0 < t < T, x ∈ Ω̃h,

uh
t (0,x) = ϕh(x), uh

t (λ ,x) = ξ h(x),uh
t (T,x) = ψ(x), x ∈ Ω̃h.

(16)

In the second step, problem (16) is replaced by first order of accuracy difference scheme⎧⎪⎪⎪⎨⎪⎪⎪⎩
− uh

k+1(x)−2uh
k(x)+uh

k−1(x)
τ2 +Ax

huh
k (x) = θ h

k (x)+ ph (x) tk, θ x
k (x) = f h(tk,x),

tk = kτ, 1 ≤ k ≤ N −1, x ∈ Ω̃h,

uh
1(x)−uh

0(x)
τ = ϕh (x) ,

uh
N(x)−uh

N−1(x)
τ = ψh (x) ,

uh
l+1(x)−uh

l (x)
τ = ξ h (x) , x ∈ Ω̃h,

(17)

and second order of accuracy difference scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− uh
k+1(x)−2uh

k(x)+uh
k−1(x)

τ2 +Ax
huh

k (x) = θ h
k (x)+ ph (x) tk, θ x

k (x) = f h(tk,x),
tk = kτ, 1 ≤ k ≤ N −1,x ∈ Ω̃h,

−3uh
0(x)+4uh

1(x)−uh
2(x)

2τ = ϕh (x) ,
3uh

N(x)−4uh
N−1(x)+uh

N−2(x)
2τ = ψh (x) ,

3uh
l+1(x)−4uh

l (x)+uh
l−1(x)

2τ +(λ
τ − [λ

τ ])

×
[

3uh
l+2(x)−4uh

l+1(x)+uh
l (x)

2τ − 3uh
l+1(x)−4uh

l (x)+uh
l−1(x)

2τ

]
= ξ h (x) ,x ∈ Ω̃h.

(18)

Applying the substitution

uh
k(x) = vh

k(x)+(Ax
h)

−1 ph(x)Ax
htk, (19)

we reduce difference problems (17) and (18) to the following auxiliary nonlocal boundary value difference problems⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− vh

k+1(x)−2vh
k(x)+vh

k−1(x)
τ2 +Ax

hvh
k (x) = θ h

k (x) , θ x
k (x) = f h(tk,x),

tk = kτ, 1 ≤ k ≤ N −1,x ∈ Ω̃h,
vh

1(x)−vh
0(x)

τ − vh
l+1(x)−vh

l (x)
τ = ϕh (x)−ξ h (x) ,

vh
N (x)−vh

N−1(x)
τ − vh

l+1(x)−vh
l (x)

τ = ψh (x)−ξ h (x) ,

(20)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− vh
k+1(x)−2vh

k(x)+vh
k−1(x)

τ2 +Ax
hvh

k (x) = θ h
k (x) , θ x

k (x) = f h(tk,x),
tk = kτ, 1 ≤ k ≤ N −1,x ∈ Ω̃h,
−3vh

0(x)+4vx
1(x)−vx

2(x)
2τ − 3vh

l+1(x)−4vh
l (x)+vh

l−1(x)
2τ

−(λ
τ − [λ

τ ])

(
3vh

l+2(x)−4vh
l+1(x)+vh

l (x)
2τ − 3vh

l+1(x)−4vh
l (x)+vh

l−1(x)
2τ

)
= ϕh (x)−ξ h (x) ,

3vh
N (x)−4vh

N−1(x)+vh
N−2(x)

2τ − 3vh
l+1(x)−4vh

l (x)+vh
l−1(x)

2τ

−(λ
τ − [λ

τ ])

(
3vh

l+2(x)−4vh
l+1(x)+vh

l (x)
2τ − 3vh

l+1(x)−4vh
l (x)+vh

l−1(x)
2τ

)
= ψh (x)−ξ h (x) ,

(21)

respectively. For finding ph (x) , we use formula

ph (x) = Ax
hξ h (x)−Ax

hvh
t (tl ,x),x ∈ Ω̃h. (22)

Let τ and |h|=
√

h2
1 + · · ·+h2

n be sufficiently small positive numbers.
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Theorem 7. Let τ and |h| be sufficiently small positive numbers. Then, for the solutions of difference schemes (17)
and (18) the following stability estimates hold:∥∥∥∥{uh

k

}N−1

1

∥∥∥∥
Cτ (L2h)

≤ M

[∥∥∥ϕh
∥∥∥

L2h
+
∥∥∥ψh

∥∥∥
L2h

+
∥∥∥ξ h

∥∥∥
L2h

+

∥∥∥∥{ f h
k

}N−1

1

∥∥∥∥
Cτ (L2h)

]
,

where M is independent of τ,α,h,ϕh(x),ψh(x), ξ h(x) and
{

f h
k (x)

}N−1

1
.

Theorem 8. Let τ and |h| be sufficiently small positive numbers. Then, for the solutions of difference schemes (17)
and (18) the following coercive stability estimate holds:∥∥∥∥∥∥

{
uh

k+1 −2uh
k +uk

k−1

τ2
)

}N−1

1

∥∥∥∥∥∥
Cα ,α

τ (L2h)

+

∥∥∥∥{uh
k

}N−1

1

∥∥∥∥
Cα,α

τ (W 2
2h)

+
∥∥∥ph

∥∥∥
L2h

≤ M

[∥∥∥ϕh
∥∥∥

W 2
2h

+
∥∥∥ψh

∥∥∥
W 2

2h

+
∥∥∥ξ h

∥∥∥
W 2

2h

+
1

α(1−α)

∥∥∥∥{ f h
k

}N

1

∥∥∥∥
Cα ,α

τ (L2h)

]
,

where M does not depend on τ,α,h,ϕh(x),ψh(x), ξ h(x), and
{

f h
k (x)

}N−1

1
.

NUMERICAL RESULTS

We consider the following inverse problem for an elliptic equation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− ∂ 2u(t,x)
∂ t2 − ∂ 2u(t,x)

∂x2 +u(t,x) = f (t,x)+ t p(x),0 < x < π,0 < t < T,
f (t,x) = (exp(−t)+2t)sin(x),
ut(0,x) = 0,0 ≤ x ≤ π,
ut(T,x) = (−exp(−T )+1)sin(x),0 ≤ x ≤ π,
ut(λ ,x) = (−exp(−λ )+1)sin(x),0 ≤ x ≤ π,
u(t,0) = u(t,π) = 0, 0 ≤ t ≤ T,λ = 3T

5 .

(23)

It is easy to see that u(t,x) = (exp(−t)+ t +1)sin(x) and p(x) = 2sin(x) are the exact solutions of (23).
By using MATLAB software, error for the numerical solutions is recorded for N = M = 20,40,80,160.

TABLE 1. Error for p

N=M=20 N=M=40 N=M=80 N=M=160

Difference scheme (17) 0.078526 0.038285 0.018891 9.3816×10−3

Difference scheme (18) 3.9786×10−3 1.0252×10−3 2.6028×10−4 6.558×10−5

TABLE 2. Error for u

N=M=20 N=M=40 N=M=80 N=M=160

Difference scheme (17) 0.10724 0.05123 0.025029 0.012369

Difference scheme (18) 7.1349×10−3 1.7948×10−3 4.5038×10−4 1.1282×10−4

CONCLUSION

In this work, we consider the inverse problem for the elliptic differential equation with Neumann conditions. Stability
and coercive stability estimates for the solution of the inverse problem with overdetermination are obtained. In
application, the inverse problem for the multidimensional elliptic equation is studied. The first and second order
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difference schemes for the approximate solution of inverse problem is presented. Theorems on the stability and
coercive stability estimates for the solutions of difference schemes are obtained. The results are supported by a
numerical example for the two-dimensional elliptic equation. As it can be seen from Tables 1-2, the second order
of accuracy difference scheme is more accurate comparing with the first order of accuracy difference scheme.

ACKNOWLEDGMENTS

The author would like to thank Prof. Dr. Allaberen Ashyralyev (Fatih University, Turkey) on his very helpful sugges-
tions in improving the quality of this work.

REFERENCES

1. A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel
Dekker, New York, 2000.

2. A. A. Samarskii, and P.N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics, Inverse
and Ill-Posed Problems Series, Walter de Gruyter&Co, Berlin, Germany, 2007.

3. V.V. Solov’ev, and Zh. Vychil, Mat.i Mat. Fiziki 44, 862-871 (2004).
4. D. Orlovsky, and S. Piskarev, J. Inverse Ill-Posed Probl. 17, 765-782 (2009).
5. S. I. Kabanikhin, J. Inverse Ill-Posed Probl. 16, 317-357 (2008).
6. V. V. Solov’ev, Differential Equations 49, 908-916 (2013).
7. V. V. Solov’ev, Differential Equations 49, 996-1005 (2013).
8. D. G. Orlovskii, Differential Equations 44, 124-134 (2008).
9. N. C. Roberty, Math. Probl. Eng. 2013, Article ID 631950, (2013), doi:10.1155/2013/631950.
10. A. Ashyralyev, and A. S. Erdogan, Vestnik of Odessa National University, Mathematics and Mechanics 15, 129-135 (2010.
11. A. Ashyralyev, and A. S. Erdogan, Int. J. Math. Comput. 11, 73-81 (2011).
12. A. Ashyralyev, and O. Demirdag, "On the numerical solution of parabolic equation with the Neumann condition arising in

determination of a control parameter,", in Numerical Analysis and Applied Mathematics, edited by T. E. Simos, ICNAAM
2011: International Conference on Numerical Analysis and Applied Mathematics, AIP Publishing, Melville, NY, 2011, vol.
1389 of AIP Conference Proceedings, pp. 613-616.

13. A. Ashyralyev, A. S. Erdogan, and O. Demirdag, Appl. Numer. Math. 62, 1672-1683 (2012).
14. M. Dehghan, Appl. Numer. Math. 37, 489-502 (2001).
15. A. S. Erdogan, and H. Uygun, Abstr. Appl. Anal. Article ID 276080, 2012 (2012).
16. C. Ashyralyyev, A. Dural, and Y. Sozen, Abstr. Appl. Anal. Article ID 294154, 2012 (2012).
17. C. Ashyralyyev, and O. Demirdag, Abstr. Appl. Anal. Article ID 603018, 2012 (2012).
18. A. Ashyralyev, and A. S. Erdogan, Appl. Math. Comput. 226, 212-228 (2014).
19. C. Ashyralyyev, A. Dural, and Y. Sozen, "Finite difference method for the reverse parabolic problem with Neumann

condition," in First International Conference on Analysis and Applied Mathematics (ICAAM 2012), edited by A. Ashyralyev,
and A. Lukashov, International Conference on Analysis and Applied Mathematics, Gumushane, Turkey, AIP Publishing,
Melville, NY, 2012, vol. 1470 of AIP Conference Proceedings, pp. 102-105.

20. C. Ashyralyyev, and M. Dedeturk, Contemporary Analysis and Applied Mathematics 1, 132-155 (2013).
21. C. Ashyralyyev, and M. Dedeturk, Abstr. Appl. Anal. 2013, Article ID 548017 (2013).
22. A. Ashyralyev, and M. Urun Abstr. Appl. Anal. 2013, Article ID 548201 (2013).
23. C. Ashyralyyev, Bound. Value Probl. 2014, (2014), doi:10.1186/1687-2770-2014-5.
24. A. Bouzitouna, N. Boussetila, and F. Rebbani, Bound. Value Probl. 2013, (2013), doi:10.1186/1687-2770-2013-178.
25. C. Ashyralyyev, "High order approximation of the inverse elliptic problem with Dirichlet-Neumann conditions", Filomat, in

press.
26. A. Ashyralyev, and M. Urun, Contemporary Analysis and Applied Mathematics 1, 156-166 (2013).
27. D. Orlovsky, and S. Piskarev, Contemporary Analysis and Applied Mathematics 1, 118-131 (2013).
28. A. Ashyralyev, Ukrainian Math. J. 62, 1397-1408 (2011).
29. A. Ashyralyev, and Y. A. Sharifov, Electron. J. Differential Equations 80 (2013).
30. Y. S. Eidelman, Math. Notes 49, 535-540 (1991).
31. V. G. Romanov, Dokl. Math. 84, 833-836 (2011).
32. K. Sakamoto, M. Yamamoto, Appl. Anal. 88, 735-748 (2009).
33. A. Ashyralyev, C. Ashyralyyev, Nonlinear Anal. Model. Control 19, 350-366 (2014).
34. S. G. Krein, Linear Differential Equations in Banach Space, Nauka, Moscow, Russia, 1966.
35. A. Ashyralyev and P.E. Sobolevskii, New Difference Schemes for Partial Differential Equations, Operator Theory Advances

and Applications, Birkhäuser Verlag, Basel, Boston, Berlin, 2004.

52 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

79.123.242.228 On: Fri, 22 Aug 2014 07:54:03


