

Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research B 262 (2007) 165-170

www.elsevier.com/locate/nimb

K-shell X-ray fluorescence cross-sections and intensity ratios for some pure metals at 59.5 and 123.6 keV

U. Cevik^{a,*}, S. Kaya^a, B. Ertugral^b, H. Baltas^c, S.M. Karabıdak^a

^a Karadeniz Technical University, Faculty of Arts and Science, Department of Physics, 61080 Trabzon, Turkey

^b Giresun University, Faculty of Arts and Science, Department of Physics, Giresun, Turkey

^c Rize University, Faculty of Arts and Science, Department of Physics, 53100 Rize, Turkey

Received 22 February 2007; received in revised form 3 May 2007 Available online 12 June 2007

Abstract

K-shell X-ray fluorescence cross-sections for some pure metals such as Cr, Fe, Co, Cu, Zn, Ga, Se, Y, Mo, Cd, In, Sn, Te, Ba, Ta, W and Bi have been theoretically and experimentally determined. The Cr, Fe, Co, Cu, Zn, Ga, Se, Y, Mo, Cd, In, Sn, Te and Ba metals were excited by 59.5 keV γ -ray from 50 mCi ²⁴¹Am radioactive source and the Ta, W and Bi targets were excited by 123.6 keV γ -ray from 25 mCi ⁵⁷Co radioactive source. The characteristic K X-rays emitted by samples were detected by using a super Si(Li) detector having a resolution of 150 eV at 5.9 keV. In addition, the $I_{K\beta}/I_{K\alpha}$ intensity ratios for these metals were studied. The obtained experimental values of the K-shell X-ray fluorescence cross-sections and the $I_{K\beta}/I_{K\alpha}$ intensity ratios have been compared with theoretical values. The measured values were in good agreement with theoretical values.

Keywords: Cross-sections; Intensity ratios; EDXRF; Super Si(Li) detector