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The boundary value problem of determining the parameter p of a parabolic equation υ′(t)+Aυ(t) =
f(t) + p (0 ≤ t ≤ 1), υ(0) = ϕ, υ(1) = ψ in an arbitrary Banach space E with the strongly
positive operator A is considered. The first order of accuracy stable difference scheme for the
approximate solution of this problem is investigated. The well-posedness of this difference scheme
is established. Applying the abstract result, the stability and almost coercive stability estimates
for the solution of difference schemes for the approximate solution of differential equations with
parameter are obtained.

1. Introduction

The differential equations with parameters play a very important role in many branches
of science and engineering. Some examples were given in temperature overspecification
by Dehghan [1], chemistry (chromatography) by Kimura and Suzuki [2], physics (optical
tomography) by Gryazin et al. [3].

The differential equations with parameters have been studied extensively by many
researchers (see, e.g., [4–20] and the references therein). However, such problems were not
well investigated in general.

As a result, considerable efforts have been expanded in formulating numerical
solution methods that are both accurate and efficient. Methods of numerical solutions of
parabolic problems with parameters have been studied by researchers (see, e.g., [21–29] and
the references therein).
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It is known that various boundary value problems for parabolic equations with
parameter can be reduced to the boundary value problem for the differential equation with
parameter p:

dv(t)
dt

+Av(t) = f(t) + p, 0 < t < 1,

v(0) = ϕ, v(1) = ψ
(1.1)

in an arbitrary Banach space E with the strongly positive operator A. In the present work,
the first order of accuracy difference scheme for the approximate solution of boundary
value problem (1.1) is studied. The well-posedness of this difference scheme is established.
Applying the abstract result, the stability and almost coercive stability estimates for the
solution of difference schemes for the approximate solution of differential equations with
parameter are obtained.

2. The Boundary Value Problem for Parabolic Equations

Throughout this work, E is a Banach space, −A is the generator of the analytic semigroup
exp{−tA}(t ≥ 0) with exponentially decreasing norm, when t → +∞, that is, the following
estimates hold:

∥
∥exp{−tA}∥∥E→E ≤Me−δt, t

∥
∥A exp{−tA}∥∥E→E ≤M, t > 0, M > 0, δ > 0. (2.1)

From estimate (2.1), it follows that

‖T‖E→E ≤M(δ). (2.2)

Here, T = (I − exp{−A})−1.
Abstract problem (1.1) was investigated in the paper [4] by applying estimates (2.1)

and (2.2). The solvability of problem (1.1) in the space C(E) of the continuous E-valued
functions ϕ(t) defined on [0, 1] equipped with the norm

∥
∥ϕ

∥
∥
C(E) = max

0≤t≤1

∥
∥ϕ(t)

∥
∥
E (2.3)

was studied under the necessary and sufficient conditions for the operator A. The solution
depends continuously on the initial and boundary data. More pricisely, we have the following
result.
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Theorem 2.1. Assume that −A is the generator of the analytic semigroup exp{−tA}(t ≥ 0) and all
points 2πik, k ∈ Z, k /= 0 do not belong to the spectrum σ(A). Let v(0) ∈ E, v(1) ∈ D(A), and
f(t) ∈ Cβ(E) (0 < β ≤ 1). Then, for the solution (v(t), p) of problem (1.1) in C(E)×E, the estimates

∥
∥p

∥
∥
E ≤M

[

‖v(0)‖E + ‖v(1)‖E + ‖Av(1)‖E +
1
β

∥
∥f

∥
∥
Cβ(E)

]

,

‖v‖C(E) ≤M
[

‖v(0)‖E + ‖v(1)‖E +
∥
∥f

∥
∥
C(E)

]
(2.4)

hold, where M does not depend on β, v(0), v(1) and f(t). Here Cβ(E) is the space obtained by
completion of the space of all smooth E-valued functions ϕ(t) on [0, 1] in the norm

∥
∥ϕ

∥
∥
Cβ(E) = max

0≤t≤1

∥
∥ϕ(t)

∥
∥
E + sup

0≤t<t+τ≤1

∥
∥ϕ(t + τ) − ϕ(t)∥∥E

τβ
. (2.5)

With the help of A, we introduce the fractional space Eα(E,A), 0 < α < 1, consisting of all
v ∈ E for which the following norms are finite [6, 30]:

‖v‖α = sup
λ>0

∥
∥
∥λ1−αA exp{−λA}v

∥
∥
∥
E
+ ‖v‖E. (2.6)

We say (v(t), p) is the solution of problem (1.1) in C
β,γ

0 (E) × E1 if the following
conditions are satisfied:

(i) v′(t), Av(t) ∈ Cβ,γ

0 (E), p ∈ E1 ⊂ E,
(ii) (v(t), p) satisfies the equation and boundary conditions (1.1).

Here, Cβ,γ

0 (E), (0 ≤ γ ≤ β, 0 < β < 1) is the Hölder space with weight obtained by
completion of the space of all smooth E-valued functions ϕ(t) on [0, 1] in the norm

∥
∥ϕ

∥
∥
C
β,γ

0 (E) = max
0≤t≤1

∥
∥ϕ(t)

∥
∥
E + sup

0≤t<t+τ≤1

(t + τ)γ
∥
∥ϕ(t + τ) − ϕ(t)∥∥E

τβ
. (2.7)

In the paper [23], the exact estimates in Cβ,γ

0 (E), (0 ≤ γ ≤ β, 0 < β < 1) and Cβ,γ

0 (Eα−β)
(0 ≤ γ ≤ β ≤ α, 0 < α < 1) Hölder spaces for the solution of problem (1.1) were proved. In
applications, exact estimates for the solution of the boundary value problems for parabolic
equations were obtained.

Now, we consider the application of Theorem 2.1. First, the boundary-value problem
on the range {0 ≤ t ≤ 1, x ∈ Rn} for the 2m-order multidimensional parabolic equation is
considered:

∂v(t, x)
∂t

+
∑

|r|=2m
ar(x)

∂|r|v(t, x)
∂xr11 · · · ∂xrnn

+ σv(t, x) = f(t, x) + p(x), 0 < t < 1,

v(0, x) = ϕ(x), v(1, x) = ψ(x), x ∈ Rn, |r| = r1 + · · · + rn,
(2.8)
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where ar(x) andf(t, x) are given as sufficiently smooth functions. Here, σ is a sufficiently
large positive constant.

It is assumed that the symbol

Bx(ξ) =
∑

|r|=2m
ar(x)(iξ1)

r1 · · · (iξn)rn , ξ = (ξ1, . . . , ξn) ∈ Rn (2.9)

of the differential operator of the form

Bx =
∑

|r|=2m
ar(x)

∂|r|

∂xr11 · · · ∂xrnn (2.10)

acting on functions defined on the space Rn satisfies the inequalities

0 < M1|ξ|2m ≤ (−1)mBx(ξ) ≤M2|ξ|2m <∞ (2.11)

for ξ /= 0.
Problem (2.8) has a unique smooth solution. This allows us to reduce problem (2.8) to

problem (1.1) in a Banach space E = Cμ(Rn) of all continuous bounded functions defined on
R
n satisfying a Hölder condition with the indicator μ ∈ (0, 1).

Theorem 2.2. For the solution of boundary problem (2.8), the following estimates are satisfied:

∥
∥p

∥
∥
Cμ(Rn) ≤M

[
∥
∥ϕ

∥
∥
Cμ(Rn) +

∥
∥ψ

∥
∥
C2m+μ(Rn) +

1
β

∥
∥f

∥
∥
Cβ(Cμ(Rn))

]

,

‖v‖C(Cμ(Rn)) ≤M
[∥
∥ϕ

∥
∥
Cμ(Rn) +

∥
∥ψ

∥
∥
Cμ(Rn) +

∥
∥f

∥
∥
C(Cμ(Rn))

]

,

(2.12)

whereM is independent of ϕ(x), ψ(x), and f(t, x).

The proof of Theorem 2.2 is based on the abstract Theorem 2.1 and on the strongly
positivity of the operator A = Bx + σI defined by formula (2.10) (see, [31–33]).

Second, letΩ be the unit open cube in the n-dimensional Euclidean space R
n (0 < xk <

1, 1 ≤ k ≤ n)with boundary S,Ω = Ω∪S. In [0, 1]×Ω, we consider the mixed boundary value
problem for the multidimensional parabolic equation

∂v(t, x)
∂t

−
n∑

r=1

αr(x)
∂2v(t, x)
∂x2

r

+ σv(t, x) = f(t, x) + p(x),

x = (x1, . . . , xn) ∈ Ω, 0 < t < 1,

v(0, x) = ϕ(x), v(1, x) = ψ(x), x ∈ Ω,

v(t, x) = 0, x ∈ S,

(2.13)

where αr(x) (x ∈ Ω), ϕ(x), ψ(x)(Ω), and f(t, x)(t ∈ (0, 1), x ∈ Ω) are given smooth functions
and αr(x) ≥ a > 0.Here, σ is a sufficiently large positive constant.
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We introduce the Banach spaces Cβ

01(Ω)(β = (β1, . . . , βn), 0 < xk < 1, k = 1, . . . , n)
of all continuous functions satisfying a Hölder condition with the indicator β = (β1, ..., βn),
βk ∈ (0, 1),1 ≤ k ≤ n, and with weight xβk

k
(1 − xk − hk)βk , 0 ≤ xk < xk + hk ≤ 1, 1 ≤ k ≤ nwhich

is equipped with the norm

∥
∥f

∥
∥
C
β

01(Ω) =
∥
∥f

∥
∥
C(Ω) + sup

0≤xk<xk+hk≤1,
1≤k≤n

∣
∣f(x1, . . . , xn) − f(x1 + h1, . . . , xn + hn)

∣
∣

×
n∏

k=1

h
−βk
k
x
βk
k (1 − xk − hk)βk ,

(2.14)

where C(Ω) is the space of the all continuous functions defined on Ω, equipped with the
norm

∥
∥f

∥
∥
C(Ω) = max

x∈Ω

∣
∣f(x)

∣
∣. (2.15)

It is known that the differential expression [34]

Av(x) = −
n∑

r=1

αr(x)
∂2v(x)
∂x2

r

+ σv(x) (2.16)

defines a positive operator A acting on Cβ

01(Ω) with the domain D(A) = {v(x), ∂2v(x)/∂x2
r ∈

C
β

01(Ω), v(x) = 0 onS}.
Therefore, we can replace mixed problem (2.13) by the abstract boundary problem

(1.1). Using the results of Theorem 2.1, we can obtain the following theorem on stability.

Theorem 2.3. For the solution of mixed boundary value problem (2.18), the following estimates are
valid:

∥
∥p

∥
∥
Cμ(Rn) ≤M

[
∥
∥ϕ

∥
∥
C
μ

01(Ω) +
∥
∥ψ

∥
∥
C

24μ
01 (Ω) +

1
β

∥
∥f

∥
∥
Cβ(Cμ

01(Ω))

]

,

‖v‖C(Cμ

01(Ω)) ≤M
[∥
∥ϕ

∥
∥
C
μ

01(Ω) +
∥
∥ψ

∥
∥
C
μ

01(Ω)) +
∥
∥f

∥
∥
C(Cμ

01(Ω)))

]

,

(2.17)

whereM does not depend on ϕ(x), ψ(x), and f(t, x).

Third, we consider the mixed boundary value problem for parabolic equation

∂v(t, x)
∂t

− a(x)∂
2v(t, x)
∂x2

+ σv(t, x) = f(t, x) + p(x), 0 < t < 1, 0 < x < 1,

v(0, x) = ϕ(x), v(1, x) = ψ(x), 0 ≤ x ≤ 1,

v(t, 0) = v(t, 1), vx(t, 0) = vx(t, 1), 0 ≤ t ≤ 1,

(2.18)
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where a(x), ϕ(x), ψ(x), and f(t, x) are given sufficiently smooth functions and a(x) ≥ a > 0.
Here, σ is a sufficiently large positive constant.

We introduce the Banach spaces Cβ[0, 1] (0 < β < 1) of all continuous functions ϕ(x)
satisfying a Hölder condition for which the following norms are finite,

∥
∥ϕ

∥
∥
Cβ[0,1] =

∥
∥ϕ

∥
∥
C[0,1] + sup

0≤x<x+τ≤1

∣
∣ϕ(x + τ) − ϕ(x)∣∣

τβ
, (2.19)

where C[0, 1] is the space of the all continuous functions ϕ(x) defined on [0, 1]with the usual
norm

∥
∥ϕ

∥
∥
C[0,1] = max

0≤x≤1

∣
∣ϕ(x)

∣
∣. (2.20)

It is known that the differential expression [30]

Av = −a(x)v′′(x) + σv(x) (2.21)

defines a positive operator A acting in Cβ[0, 1] with the domain

D(A) =
{

v(x), v′′(x) ∈ Cβ[0, 1], v(0) = v(1), vx(0) = vx(1)
}

. (2.22)

Therefore, we can replace the mixed problem (2.18) by the abstract boundary value
problem (1.1). Using the result of Theorem 2.1, we can obtain the following theorem on
stability.

Theorem 2.4. For the solution of mixed problem (2.18), the following estimates are valid:

∥
∥p

∥
∥
Cμ[0,1] ≤M

[
∥
∥ϕ

∥
∥
Cμ[0,1] +

∥
∥ψ

∥
∥
C2+μ[0,1] +

1
β

∥
∥f

∥
∥
Cβ(Cμ[0,1])

]

,

‖v‖C(Cμ[0,1]) ≤M
[∥
∥ϕ

∥
∥
Cμ[0,1] +

∥
∥ψ

∥
∥
Cμ[0,1] +

∥
∥f

∥
∥
C(Cμ[0,1])

]

,

(2.23)

whereM is independent of ϕ(x), ψ(x), and f(t, x).

3. Rothe Difference Scheme for Parabolic Equations with
an Unknown Parameter

In this section, our focus is the well-posedness of the Rothe difference scheme

τ−1(uk − uk−1) +Auk = ϕk + p, ϕk = f(tk),

tk = kτ, 1 ≤ k ≤N, Nτ = 1,

u0 = ϕ, uN = ψ

(3.1)

for approximately solving problem (1.1).
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Let [0, 1]τ = {tk = kτ, k = 0, 1, . . . ,N, Nτ = 1} be the uniform grid space with step size
τ > 0, whereN is a fixed positive integer.

Throughout the section, C([0, 1]τ , E) denotes the linear space of grid functions ϕτ =
{ϕk}N1 with values in the Banach space E.

LetCτ(E) = C([0, 1]τ , E) be the Banach space of bounded grid functions with the norm

∥
∥ϕτ

∥
∥
Cτ (E)

= max
1≤k≤N

∥
∥ϕk

∥
∥
E. (3.2)

For α ∈ [0, 1], let Cα(E) = Cα([0, 1]τ , E) be the Hölder space with the following norm:

∥
∥ϕτ

∥
∥
Cα(E) =

∥
∥ϕτ

∥
∥
Cτ (E)

+ max
1≤k<k+r≤N

∥
∥ϕk+r − ϕk

∥
∥
E

(rτ)α
. (3.3)

Let us start with some lemmas we need in the following.

Lemma 3.1 (see [31]). The following estimates hold:

∥
∥
∥Rk

∥
∥
∥
E→E

≤ 1

(1 + δτ)k
, k ≥ 1,

∥
∥
∥τARk

∥
∥
∥
E→E

≤ 1
k
, k ≥ 1,

(3.4)

for someM,δ > 0, which are independent of τ , where τ is a positive small number andR = (I + τA)−1

is the resolvent of A.

Lemma 3.2. The operator I − RN has an inverse Tτ = (I − RN)−1and the following estimate is
satisfied:

‖Tτ‖E→E ≤M(δ). (3.5)

Let us now obtain the formula for the solution of problem (3.1). It is clear that the first
order of accuracy difference scheme

τ−1(uk − uk−1) +Auk = p + ϕk, ϕk = f(tk),

tk = kτ, 1 ≤ k ≤N, Nτ = 1,

u0 = ϕ,

(3.6)

has a solution and the following formula holds:

uk = Rkϕ +
k∑

j=1

Rk−j+1(p + ϕj
)

τ, 1 ≤ k ≤N. (3.7)
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Applying formula (3.7) and the boundary condition

uN = ψ, (3.8)

we can write

ψ = RNϕ +
N∑

j=1

RN−j+1ϕjτ +
N∑

j=1

RN−j+1τp. (3.9)

Since

N∑

j=1

RN−j+1τ = A−1(I − R)
N∑

j=1

RN−j = A−1
(

I − RN
)

, (3.10)

we have that

ψ = RNϕ +
N∑

j=1

RN−j+1ϕjτ +A−1
(

I − RN
)

p. (3.11)

Using Lemma 3.2, we get

p = Tτ

⎛

⎝Aψ −ARNϕ −
N∑

j=1

ARN−j+1ϕjτ

⎞

⎠. (3.12)

Using formulas (3.7) and (3.12), we get

uk = Rkϕ +
k∑

j=1

Rk−j+1ϕjτ +
k∑

j=1

Rk−j+1τTτ

⎛

⎝Aψ −ARNϕ −
N∑

j=1

ARN−j+1ϕjτ

⎞

⎠, 1 ≤ k ≤N.

(3.13)

Since

k∑

j=1

Rk−j+1τ = A−1(I − R)
k∑

j=1

Rk−j = A−1
(

I − Rk
)

, (3.14)

we have that

uk = Rkϕ +
k∑

j=1

Rk−j+1ϕjτ +
(

I − Rk
)

Tτ

⎛

⎝ψ − RNϕ −
N∑

j=1

RN−j+1ϕjτ

⎞

⎠, 1 ≤ k ≤N. (3.15)

Hence, difference equation (3.1) is uniquely solvable, and, for the solution, formulas (3.12)
and (3.15) are valid.
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Theorem 3.3. For the solution ({uk}Nk=1, p) of problem (3.1) in Cτ(E) × E, the stability estimates

∥
∥p

∥
∥
E ≤ M

[
∥
∥ϕ

∥
∥
E +

∥
∥Aψ

∥
∥
E +

1
β

∥
∥
∥

{

ϕk
}N

k=1

∥
∥
∥
C
β
τ (E)

]

, (3.16)

∥
∥
∥{uk}Nk=1

∥
∥
∥
Cτ (E)

≤ M

[
∥
∥ϕ

∥
∥
E +

∥
∥ψ

∥
∥
E +

∥
∥
∥

{

ϕk
}N

k=1

∥
∥
∥
Cτ (E)

]

(3.17)

hold, whereM is independent of τ , ϕ, ψ, and {ϕk}Nk=1.

Proof. From formulas (3.7) and (3.12), it follows that

p = Tτ

⎛

⎝Aψ −ARNϕ −
N−1∑

j=1

ARN−j+1(ϕj − ϕN
)

τ −
(

I − RN
)

ϕN

⎞

⎠. (3.18)

Using this formula, the triangle inequality, and estimates (3.4), we obtain

∥
∥p

∥
∥
E ≤ ‖Tτ‖E→E

⎛

⎝
∥
∥Aψ

∥
∥
H +

∥
∥
∥ARN

∥
∥
∥
E→E

∥
∥ϕ

∥
∥
E

+
N−1∑

j=1

∥
∥
∥ARN−j+1

∥
∥
∥
E→E

∥
∥ϕj − ϕN

∥
∥
E
τ +

(

1 +
∥
∥
∥RN

∥
∥
∥
E→E

)∥
∥ϕN

∥
∥
E

⎞

⎠

≤ M

[
∥
∥ϕ

∥
∥
E +

∥
∥Aψ

∥
∥
E +

1
β

∥
∥
∥

{

ϕk
}N

k=1

∥
∥
∥
C
β
τ (E)

]

.

(3.19)

The estimate (3.16) is proved. Using formula (3.15), the triangle inequality, and
estimates (3.4), we obtain

‖uk‖E ≤
⎛

⎝

∥
∥
∥Rk

∥
∥
∥
E→E

∥
∥ϕ

∥
∥
E +

k∑

j=1

∥
∥
∥Rk−j+1

∥
∥
∥
E→E

∥
∥ϕj

∥
∥
E
τ +

(

1 +
∥
∥
∥Rk

∥
∥
∥
E→E

)

‖Tτ‖E→E

×
⎛

⎝‖ψ‖E +
∥
∥
∥RN

∥
∥
∥
E→E

∥
∥ϕ

∥
∥
E +

N∑

j=1

∥
∥
∥RN−j+1

∥
∥
∥
E→E

∥
∥ϕj

∥
∥
E
τ

⎞

⎠

⎞

⎠

≤M
[
∥
∥ϕ

∥
∥
E +

∥
∥ψ

∥
∥
E +

∥
∥
∥

{

ϕk
}N

k=1

∥
∥
∥
Cτ (E)

]

(3.20)

for any k. From that it follows estimate (3.17). Theorem 3.3 is proved.
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Theorem 3.4. For the solution ({uk}Nk=1, p) of problem (3.1) inCτ(E)×E, the almost coercive stability
estimates

∥
∥p

∥
∥
E ≤M

[
∥
∥ϕ

∥
∥
E +

∥
∥Aψ

∥
∥
E +min

{

ln
1
τ
, |ln ‖A‖E→E|

}∥
∥
∥

{

ϕk
}N

k=1

∥
∥
∥
Cτ (E)

]

, (3.21)

∥
∥
∥

{

τ−1(uk − uk−1)
}N

k=1

∥
∥
∥
Cτ (E)

+
∥
∥
∥{Auk}Nk=1

∥
∥
∥
Cτ (E)

≤M
[
∥
∥Aϕ

∥
∥
E +

∥
∥Aψ

∥
∥
E +min

{

ln
1
τ
, |ln ‖A‖E→E|

}∥
∥
∥

{

ϕk
}N

k=1

∥
∥
∥
Cτ (E)

]

(3.22)

hold, whereM does not depend on τ , ϕ, ψ, and {ϕk}Nk=1.
Proof. Using formula (3.12), the triangle inequality and estimates (3.4), we obtain

∥
∥p

∥
∥
E ≤ ‖Tτ‖E→E

⎛

⎝
∥
∥Aψ

∥
∥
H +

∥
∥
∥RN

∥
∥
∥
E→E

∥
∥Aϕ

∥
∥
E +

N−1∑

j=1

∥
∥
∥ARN−j+1

∥
∥
∥
E→E

∥
∥ϕj

∥
∥
E
τ

⎞

⎠

≤M
⎡

⎣
∥
∥Aϕ

∥
∥
E +

∥
∥Aψ

∥
∥
E +

N−1∑

j=1

∥
∥
∥ARN−j+1

∥
∥
∥
E→E

τ
∥
∥
∥

{

ϕk
}N

k=1

∥
∥
∥
Cτ (E)

⎤

⎦.

(3.23)

Since [31]

N−1∑

j=1

∥
∥
∥ARN−j+1

∥
∥
∥
E→E

τ ≤Mmin
{

ln
1
τ
, |ln ‖A‖E→E|

}

, (3.24)

we have estimate (3.21). Using formula (3.15), the triangle inequality, and estimates (3.4),
(3.24), we obtain

‖Auk‖E ≤
⎛

⎝

∥
∥
∥Rk

∥
∥
∥
E→E

∥
∥Aϕ

∥
∥
E +

k∑

j=1

∥
∥
∥ARk−j+1

∥
∥
∥
E→E

∥
∥ϕj

∥
∥
E
τ +

(

1 +
∥
∥
∥Rk

∥
∥
∥
E→E

)

‖Tτ‖E→E

×
⎛

⎝
∥
∥Aψ

∥
∥
E +

∥
∥
∥RN

∥
∥
∥
E→E

∥
∥Aϕ

∥
∥
E +

N∑

j=1

∥
∥
∥ARN−j+1

∥
∥
∥
E→E

∥
∥ϕj

∥
∥
Eτ

⎞

⎠

⎞

⎠

≤M
[
∥
∥Aϕ

∥
∥
E +

∥
∥Aψ

∥
∥
E +min

{

ln
1
τ
, |ln ‖A‖E→E|

}∥
∥
∥

{

ϕk
}N

k=1

∥
∥
∥
Cτ (E)

]

(3.25)

for any k. Therefore,

∥
∥
∥{Auk}Nk=1

∥
∥
∥
Cτ (E)

≤M
[
∥
∥Aϕ

∥
∥
E +

∥
∥Aψ

∥
∥
E +min

{

ln
1
τ
, |ln ‖A‖E→E|

}∥
∥
∥

{

ϕk
}N

k=1

∥
∥
∥
Cτ (E)

]

.

(3.26)

This estimate, triangle inequality, and (1.1) yield estimate (3.22). Theorem 3.4 is proved.
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4. Applications

Now, we consider the applications of Theorems 3.3 and 3.4. The boundary value problem
(2.18) for the parabolic differential equation is considered. The discretization of problem
(2.18) is carried out in two steps. In the first step, we define the grid space

[0, 1]h = {x = xn : xn = nh, 0 ≤ n ≤M,Mh = 1}. (4.1)

Let us introduce the Banach space Ch = C([0, 1]h) of the grid functions ϕh(x) = {ϕn}M−1
1

defined on [0, 1]h, equipped with the norm

∥
∥
∥ϕh

∥
∥
∥
Ch

= max
x∈[0,1]h

∣
∣
∣ϕh(x)

∣
∣
∣. (4.2)

To the differential operator A generated by problem (2.18), we assign the difference operator
Ax
h by the formula

Ax
hϕ

h(x) =
{

−(a(x)ϕx
)

x,n + σϕn
}M−1

1
(4.3)

acting in the space of grid functions ϕh(x) = {ϕn}M−1
1 satisfying the conditions ϕ0 = ϕM,

ϕ1 − ϕ0 = ϕM − ϕM−1. It is wellknown that Ax
h is a strongly positive operator in Ch. With the

help of Ax
h
, we arrive at the boundary value problem

duh(t, x)
dt

+Ax
hu

h(t, x) = ph(x) + fh(t, x), 0 < t < 1, x ∈ [0, 1]h,

uh(0, x) = ϕh(x), uh(1, x) = ψh(x), x ∈ [0, 1]h.

(4.4)

In the second step, we replace (4.4) with the difference scheme (3.1)

uhk(x) − uhk−1(x)
τ

+Ax
hu

h
k(x) = p

h(x) + fhk (x),

fhk (x) = f
h(tk, x), tk = kτ, 1 ≤ k ≤N, x ∈ [0, 1]h,

uh(0, x) = ϕh(x), uh(1, x) = ψh(x), x ∈ [0, 1]h.

(4.5)

Theorem 4.1. The solution pairs ({uhk(x)}
N

0 , p
h(x)) of problem (4.5) satisfy the stability estimates

∥
∥
∥ph

∥
∥
∥
Ch

≤M1

[
∥
∥
∥ϕh

∥
∥
∥
Ch

+
∥
∥
∥ψh

∥
∥
∥
Ch

+
∥
∥
∥Ax

hψ
h
∥
∥
∥
Ch

+
1
β

∥
∥
∥
∥

{

fhk

}N

1

∥
∥
∥
∥
C
β
τ (Ch)

]

,

∥
∥
∥
∥

{

uhk

}N

1

∥
∥
∥
∥
Cτ (Ch)

≤M2

[
∥
∥
∥ϕh

∥
∥
∥
Ch

+
∥
∥
∥ψh

∥
∥
∥
Ch

+
∥
∥
∥
∥

{

fhk

}N

1

∥
∥
∥
∥
Cτ (Ch)

]

,

(4.6)

whereM1 andM2 do not depend on β,ϕh, ψh, and fh
k
, 1 ≤ k ≤N.
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Here, Cβ
τ (Ch) is the grid space of grid functions {fhk }

N

1 defined on [0, 1]τ × [0, 1]h with norm

∥
∥
∥
∥

{

fhk

}N

1

∥
∥
∥
∥
C
β
τ (Ch)

=
∥
∥
∥
∥

{

fhk

}N

1

∥
∥
∥
∥
Cτ (Ch)

+ sup
1≤k<k+r≤N

∥
∥
∥fhk+r − fhk

∥
∥
∥
L2h

(rτ)β
,

∥
∥
∥
∥

{

fhk

}N

1

∥
∥
∥
∥
Cτ (Ch)

= max
1≤k≤N

∥
∥
∥fhk

∥
∥
∥
Ch

.

(4.7)

The proof of Theorem 4.1 is based on Theorem 3.3 and the positivity property of the
operator Ax

h defined by formula (4.3).

Theorem 4.2. The solution pairs ({uhk(x)}
N

0 , p
h(x)) of problem (4.5) satisfy the almost coercive

stability estimates

∥
∥
∥ph

∥
∥
∥
Ch

≤M1

[
∥
∥
∥Ax

hϕ
h
∥
∥
∥
Ch

+
∥
∥
∥Ax

hψ
h
∥
∥
∥
Ch

+ ln
1

τ + h

∥
∥
∥
∥

{

fhk

}N

1

∥
∥
∥
∥
Cτ (Ch)

]

,

∥
∥
∥
∥
∥
∥

{

uh
k − uhk−1
τ

}N

1

∥
∥
∥
∥
∥
∥
Cτ (Ch)

+
∥
∥
∥
∥

{

Ax
hu

h
k

}N

1

∥
∥
∥
∥
Cτ (Ch)

≤M2

[

∥
∥Ax

h
ϕh

∥
∥
Ch

+
∥
∥Ax

h
ψh

∥
∥
Ch

+ ln
1

τ + h

∥
∥
∥
∥

{

fh
k

}N

1

∥
∥
∥
∥
Cτ (Ch)

]

,

(4.8)

whereM1 andM2 are independent of ϕh, ψh, and fhk , 1 ≤ k ≤N.

The proof of Theorem 4.2 is based on Theorem 3.4 and the positivity property of the
operator Ax

h defined by formula (4.3) and on the estimate

min
{

ln
1
τ
,
∣
∣
∣ln

∥
∥Ax

h

∥
∥
Ch →Ch

∣
∣
∣

}

≤M ln
1

τ + h
. (4.9)

Note that, in a similar manner, we can construct the difference schemes of the first
order of accuracy with respect to one variable for approximate solutions of boundary value
problems (2.8) and (2.13). Abstract theorems given from above permit us to obtain the
stability, the almost stability estimates for the solutions of these difference schemes.

5. Conclusion

In this work, the first order of accuracy Rothe difference scheme for the approximate solution
of the boundary value problem of determining the parameter p of a parabolic equation

v′(t) +Av(t) = f(t) + p(0 ≤ t ≤ 1), v(0) = ϕ, v(1) = ψ (5.1)

in arbitrary Banach space E with the strongly positive operator A is studied. The well-
posedness of the difference scheme is established. Some results in this paper in Hilbert
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space H with self adjoint positive definite operator A were obtained in the paper [25]. The
investigation of this paper in arbitrary Banach space E with the strongly positive operator A
permits us to obtain the stability and almost stability estimates for the solution of difference
schemes for the approximate solution of differential equations with parameter are obtained.
Of course, such type results for the solution of difference scheme for the following boundary
value problems

v′(t) +Av(t) = f(t) + p(0 ≤ t ≤ 1), v(0) = ϕ, v(λ) = ψ, 0 < λ ≤ 1,

v′(t) −Av(t) = f(t) + p(0 ≤ t ≤ 1), v(1) = ϕ, v(λ) = ψ, 0 ≤ λ < 1
(5.2)

in an arbitrary Banach space with positive operator A and an unknown parameter p hold.
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