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A finite difference method for the approximate solution of the reverse multidimensional parabolic
differential equation with a multipoint boundary condition and Dirichlet condition is applied.
Stability, almost coercive stability, and coercive stability estimates for the solution of the first
and second orders of accuracy difference schemes are obtained. The theoretical statements are
supported by the numerical example.

1. Introduction

In the study of boundary value problems for partial differential equations, the role played by
the well-posedness (coercivity inequalities) is well known (see, e.g., [1–3]). Well-posedness
of nonlocal boundary value problems for partial differential equations of parabolic type has
been studied extensively by many researchers (see, e.g., [4–15] and the references therein).

In the paper [4], Ashyralyev studied the positivity of second-order differential and
difference operators with nonlocal condition and the structure of interpolation spaces
generated by these operators in a Banach space. Applying this result, he obtained the coercive
inequalities for the solutions of the nonlocal boundary value problem for differential and
difference equations.

In [5], Ashyralyev et al. considered the nonlocal boundary value problem

v′(t) +Av(t) = f(t), 0 < t < 1, v(0) = v(λ) + μ, 0 < λ ≤ 1, (1.1)
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in a Banach space with strongly positive operator A. They established the well-posedness
of problem (1.1) in Hölder spaces. Moreover, they obtained the exact Schauder’s estimates in
Hölder norms of solutions of the boundary values problem for 2m-th order multidimensional
parabolic equations.

Ashyralyev established in [6] the well-posedness of the nonlocal boundary-value
problem (1.1) in Bochner spaces. He considered the first and second order of accuracy
difference schemes for the approximate solutions of problem (1.1). He also established the
coercive inequalities for the solutions of these difference schemes. Moreover, in applications,
he obtained the almost coercive stability and coercive stability estimates for the solutions of
difference schemes for the approximate solutions of the nonlocal boundary-value problem
for parabolic equation.

Clément and Guerre-Delabriére studied in [8]maximal regularity (in the Lp-sense) for
abstract Cauchy problems of order one and boundary value problems of order two. As is
well-known regularity of the first problems implies regularity of the second ones; they also
proved that the converse to hold if the underlying Banach space has the UMD property. A
stronger notion of regularity, which is introduced by Sobolevskii, plays an important role in
the proofs.

In [9], Gulin et al. considered the linear heat equation:

ut = uxx + uyy, 0 < x < 1, 0 < y < 1, (1.2)

with Dirichlet condition u(x, 0, t) = u(x, 1, t) = 0, 0 ≤ x ≤ 1 and nonlocal boundary conditions
u(0, y, t) = 0, ux(0, y, t) = ux(1, y, t), 0 ≤ y ≤ 1. They constructed an explicit difference scheme
with second order of approximation with respect to the space variables and first order of
approximation with respect to t. Moreover, using previous results of Ionkin and Morozova
for the one-dimensional heat equation with nonlocal boundary conditions, they proved the
stability of this scheme with respect to theD1-norm ‖y‖D1 = (D1y, y)

1/2, which is induced by
the symmetric and positive-definite matrix D1.

Liu et al. studied in [10] a finite difference method for multidimensional nonlinear
coupled system of parabolic and hyperbolic equations. By using a variational method, they
obtained an a priori estimate. They also proved that the finite difference scheme is uniquely
solvable and unconditionally stable. To support the theory, they gave numerical example of
two-dimensional problem.

In [11, 12], Martin-Vaquero and Vigo-Aguiar provided algorithms improving the CPU
time and accuracy of Crandall’s formula. They studied the convergence of the algorithms and
compared the efficiency of the methods with well-known numerical examples.

In [13], Sapagovas applied finite difference approximations to a nonhomogeneous
heat equation in one space dimension, subject to nonlocal boundary conditions. He presented
a stable difference approximation for the equation and a piecewise constant discretization of
the integrals appearing in the boundary conditions. He discussed the stability of the complete
problem with respect to two parameters included in the integral terms. He constructed a
stability region in the plane of the parameters and gave practical examples with specific
choices of the integral conditions. Sapagovas investigated in [14] the stability of implicit
difference schemes for the equation of a thermoelastic rod, which is a parabolic equation
subject to integral conditions for the boundaries.

In [15], Shakhmurov dealt with a nonlocal boundary value problem for a degenerate
equation in a Banach space E with unbounded operators in E. He proved the maximal Lp
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regularity and Fredholmness of the problem. He also applied the results to nonlocal boundary
value problems for degenerate elliptic and quasielliptic differential equations and their finite
or infinite systems on cylindrical domains.

It is well known that reverse problems arise in various applications, for example,
boundary layer problems in fluid dynamics [16, 17], plasma physics, and astrophysics in
the study of propagation of an electron beam through the solar corona [18]. For further
applications of such problems, we refer the reader to [19–22] and the references therein.

In the paper [23], Ashyralyev et al. considered themultipoint nonlocal boundary value
problem for reverse parabolic equations

du(t)
dt

−Au(t) = f(t), (0 ≤ t ≤ 1),

u(1) =
p∑

k=1

αku(θk) + ϕ,

0 ≤ θ1 < θ2 < · · · < θp < 1

(1.3)

in a Hilbert spaceH with self-adjoint positive definite operator A.
u(t) is called a solution of problem (1.3) if the following conditions hold:

(1) u(t) is continuously differentiable on the segment [0, 1]. The derivatives at the end
points of the segment are understood as the appropriate unilateral derivatives.

(2) The element u(t) belongs to D(A) for all t ∈ [0, 1] and the function Au(t) is
continuous on the segment [0, 1].

(3) u(t) satisfies the equation and the nonlocal boundary conditions (1.3).

A solution of problem (1.3) defined in this manner will be from now referred to as a
solution of problem (1.3) in the space C(H) = C([0, 1],H) of all continuous functions ϕ(t)
defined on [0, 1] with values inH equipped with the norm

∥∥ϕ
∥∥
C(H) = max

0≤t≤1

∥∥ϕ(t)
∥∥
H. (1.4)

Problem (1.3) is well posed in C(H), if for the solutions of (1.3), we have the following
coercivity inequality:

∥∥u′
∥∥
C(H) + ‖Au(t)‖C(H) ≤M

(∥∥f
∥∥
C(H) +

∥∥Aϕ
∥∥
H

)
. (1.5)

Here, 1 ≤M is independent of f(t) ∈ C(H), ϕ ∈ D(A).
Throughout the paper,M indicates positive constants which can be different from time

to time and we are not interested to make precise. We writeM(α, β, . . .) to stress the fact that
the constant depends only on α, β, . . .

Under the assumption:

p∑

k=1

|αk| ≤ 1. (1.6)
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Ashyralyev et al. established in [23] the well-posedness of these problems in the space
of smooth functions. In applications, they obtained coercivity estimates for the solution of
parabolic differential equations.

Moreover, in [24], Ashyralyev et al. considered the first order of accuracy Rothe
difference scheme:

τ−1(uk − uk−1) −Auk−1 = ϕk, ϕk = f(tk),

tk = kτ, 1 ≤ k ≤N, Nτ = 1,

uN =
p∑

m=1

αmu�m + ϕ,

�m =
[
θm
τ

]
, 1 ≤ m ≤ p,

(1.7)

for approximately solving problem (1.3). They established some stability estimates and
almost coercivity of the solution for the difference scheme.

In the present paper, multipoint nonlocal boundary value problem for themultidimen-
sional parabolic equation with Dirichlet condition,

ut(t, x) +
n∑

r=1

(ar(x)uxr )xr = f(t, x),

x = (x1, . . . , xn) ∈ Ω, 0 < t < 1,

u(1, x) =
p∑

i=1

αiu(θi, x) + ϕ(x), x ∈ Ω,

0 ≤ θ1 < θ2 < · · · < θp < 1,

u(t, x) = 0, x ∈ S, 0 ≤ t ≤ 1

(1.8)

under the condition (1.6) is considered. Here, ar(x), (x ∈ Ω), ϕ(x) (x ∈ Ω), and f(t, x) (t ∈
(0, 1), x ∈ Ω) are given smooth functions and ar(x) ≥ a > 0, and Ω = (0, �) × · · · × (0, �) is the
open cube in the n-dimensional Euclidean space with boundary S, Ω = Ω ∪ S. In the Hilbert
spaceH = L2(Ω), we introduce the self-adjoint positive definite operator A defined by

Au(x) = −
n∑

r=1

(ar(x)uxr (x))xr , (1.9)

with domain

D(A) =
{
u, uxr , uxrxr ∈ L2

(
Ω
)
, 1 ≤ r ≤ n : u(x)|x∈S = 0

}
. (1.10)

Then, problem (1.8) can be written in the abstract form as the nonlocal boundary value
problem for reverse parabolic equation (1.3).
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The first and second orders of accuracy in t and the second order of accuracy in space
variables for the approximate solution of problem (1.8) are presented. Applying the method
of papers [23, 24], the stability, almost coercive stability, and coercive stability estimates
for the solution of these difference schemes are obtained. The modified Gauss elimination
method for solving these difference schemes in the case of one-dimensional parabolic partial
differential equations is used.

2. Difference Schemes: Stability Estimates

We will discretize problem (1.8) in two steps. In the first step, we define the grid spaces

Ω̃h = {x = xm = (h1m1, . . . , hnmn);m = (m1, . . . , mn), mr = 0, . . . ,Nr, hrNr = 1, r = 1, . . . , n},

Ωh = Ω̃h ∩Ω, Sh = Ω̃h ∩ S.
(2.1)

We denote that |h| =
√
h21 + · · · + h21. Let L2h = L2(Ω̃h) denote the Banach space of grid

functions:

ϕh(x) =
{
ϕ(h1m1, . . . , hnmn)

}
, (2.2)

defined on Ω̃h, equipped with the norm

∥∥∥ϕh
∥∥∥
L2h

=

⎛

⎝
∑

x∈Ω̃h

∣∣∣ϕh(x)
∣∣∣
2
h1 · · ·hn

⎞

⎠
1/2

. (2.3)

To the differential operator A generated by problem (1.8), we assign the second-order
approximation difference operator Ax

h
= Cx

h
+ Bx

h
acting in the space of grid functions uh(x),

satisfying the condition uh(x) = 0 for all x ∈ Sh. Assume that Cx
h
is self-adjoint, positive-

definite operator in L2h and (Cx
h
)−1Bx

h
is bounded operator in L2h.

By using Ax
h
, we arrive at the multipoint nonlocal boundary value problem:

duh(t, x)
dt

−Ax
hu

h(t, x) = fh(t, x), 0 < t < 1, x ∈ Ω̃h,

uh(1, x) =
p∑

m=1

αmu
h(θm, x) + ϕh(x), x ∈ Ω̃h,

(2.4)

for a finite system of ordinary differential equations with a fixed |h|. Note that |h| =√
h21 + · · · + h2n → 0. Therefore, we will try to obtain stability, coercivity stability, and almost

coercivity estimates with constants independent of |h|.
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In the second step, problem (2.4) is replaced by the first order of accuracy difference
scheme

uhk(x) − uhk−1(x)
τ

−Ax
hu

h
k−1(x) = f

h
k (x),

fhk (x) = f
h(tk, x), tk = kτ, 1 ≤ k ≤N, x ∈ Ω̃h,

uhN(x) =
p∑

m=1

αmu
h
�m
(x) + ϕh(x), x ∈ Ω̃h,

�m =
[
θm
τ

]
, m = 1, . . . , p,

(2.5)

and the second order of accuracy difference scheme

uhk(x) − uhk−1(x)
τ

−Ax
hB

x
hu

h
k−1(x) = f

h
k (x),

Bxh = I +
τAx

h

2
, fhk (x) = B

x
hf

h(tk−(τ/2), x
)
,

tk = kτ, 1 ≤ k ≤N, Nτ = 1, x ∈ Ω̃h,

uhN(x) =
p∑

m=1

αm
{(
I + dmAx

h

)
uh�m(x) + dmB

x
hψ�m+1

}
+ ϕh(x), x ∈ Ω̃h,

dm = θm −
[
θm
τ

]
τ, �m =

[
θm
τ

]
, m = 1, . . . , p,

(2.6)

where [·] denotes the greatest integer function.
To formulate our results, let L2h = L2(Ω̃h) and W2

2h = W2
2 (Ω̃h) be spaces of the grid

functions ϕh(x) = {ϕ(h1m1, . . . , hnmn)} defined on Ω̃h, equipped with the norms

∥∥∥ϕh
∥∥∥
L2h

=

⎛

⎝
∑

x∈Ω̃h

∣∣∣ϕh(x)
∣∣∣
2
h1 · · ·hn

⎞

⎠
1/2

,

∥∥∥ϕh
∥∥∥
W2

2h

=
∥∥∥ϕh

∥∥∥
L2h

+

⎛

⎝
∑

x∈Ω̃h

n∑

r=1

∣∣∣∣
(
ϕh
)

xr

∣∣∣∣
2

h1 · · ·hn
⎞

⎠
1/2

+

⎛

⎝
∑

x∈Ω̃h

n∑

r=1

∣∣∣∣
(
ϕh(x)

)

xrxr ,mr

∣∣∣∣
2

h1 · · ·hn
⎞

⎠
1/2

.

(2.7)

Furthermore, let [0, 1]τ = {tk = kτ, 1 ≤ k ≤ N, Nτ = 1} be the uniform grid space with
step size τ > 0, whereN is a fixed positive integer. We denote Fτ(H) = F([0, 1]τ ,H) for the
linear space of grid functions ϕτ = {ϕk}N1 with values in the Hilbert spaceH.
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For α ∈ [0, 1], let Cα(H) = Cα([0, 1]τ ,H) and Cα1(H) = Cα1([0, 1]τ ,H) be, respectively,
the Hölder space and the weighted Hölder space with the norms

∥∥ϕτ
∥∥
Cα(H) =

∥∥ϕτ
∥∥
Cτ (H) + max

1≤k<k+r≤N

∥∥ϕk+r − ϕk
∥∥
H

(rτ)α
,

∥∥ϕτ
∥∥
Cα1 (H) =

∥∥ϕτ
∥∥
Cτ (H) + max

1≤k<k+r≤N

((N − k)τ)α∥∥ϕk+r − ϕk
∥∥
H

(rτ)α
.

(2.8)

Here, Cτ(H) = C([0, 1]τ ,H) is the Banach space of bounded grid functions with norm:

∥∥ϕτ
∥∥
Cτ (H) = max

1≤k≤N

∥∥ϕk
∥∥
H. (2.9)

Theorem 2.1. Let τ and |h| be sufficiently small positive numbers. Then, for the solutions of difference
schemes (2.5) and (2.6), the following stability estimate holds:

∥∥∥∥
{
uhk

}N
0

∥∥∥∥
Cτ (L2h)

≤M(
δ, θp

)
[∥∥∥ϕh

∥∥∥
L2h

+
∥∥∥∥
{
fhk

}N
1

∥∥∥∥
Cτ (L2h)

]
, (2.10)

whereM(δ, θp) is independent of τ , h, ϕh(x), and fhk (x) and k = 1, . . . ,N.

Proof. The proof of Theorem 2.1 is based on the formulas for the solution of difference scheme
(2.5)

uhk = RN−kuhN −
N∑

j=k+1

Rj−kfhj τ, 0 ≤ k ≤N − 1, (2.11)

uhN = Tτ

⎛

⎝−
p∑

k=1

N∑

j=�k+1

αkR
j−�kfhj τ + ϕh

⎞

⎠, (2.12)

and for the solution of difference scheme (2.6)

uhk = DN−kuhN −
N∑

j=k+1

Dj−kfhj τ, 0 ≤ k ≤N − 1, (2.13)

uhN = T ′
τ

⎧
⎨

⎩−
p∑

m=1

N∑

j=�m+1

αm
(
I + dmAx

h

)
Dj−�mfhj τ +

p∑

m=1

αmdm
(
Bxh
)−1

fh�m+1 + ϕ
h

⎫
⎬

⎭. (2.14)
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Here,

R =
(
I + τAx

h

)−1
, D =

⎛

⎝I + τAx
h +

(
τAx

h

)2

2

⎞

⎠
−1

,

Tτ =

(
I −

p∑

k=1

αkR
N−[θk/τ]

)−1
, T ′

τ =

(
I −

p∑

k=1

αk
(
I + dkAx

h

)
DN−[θk/τ]

)−1
.

(2.15)

By the spectral representation of self-adjoint positive definite operator and the triangle
inequality, we have

‖Tτ‖H→H ≤ sup
δ≤μ

1∣∣∣1 −∑p

k=1 αk
(
1 + τμ

)−N+[θp/τ]
∣∣∣
≤M(

δ, θp
)
. (2.16)

Similarly, we have

∥∥T ′
τ

∥∥
H→H ≤M(

δ, θp
)
. (2.17)

Estimates (2.16) and (2.17) conclude the proof of Theorem 2.1.

Theorem 2.2. Let τ and |h| be sufficiently small positive numbers. Then, for the solutions of difference
problem (2.5) and (2.6), the following almost coercivity inequality

∥∥∥∥
{
τ−1
(
uhk − ukk−1

)}N
1

∥∥∥∥
Cτ (L2h)

≤M(
δ, θp

)
[∥∥∥ϕh

∥∥∥
W2

2h

+
∥∥∥∥
{
fhk

}N
1

∥∥∥∥
Cτ (L2h)

ln
1

τ + |h|

]
(2.18)

is valid, whereM(δ, θp) does not depend on τ, h, ϕh(x),fhk (x), k = 1, . . . ,N.

Proof. Using formulas (2.11)–(2.14), estimates (2.16) and (2.17), the triangle inequality,
assumption (1.6), we obtain

∥∥∥∥
{
τ−1
(
uhk − ukk−1

)}N
1

∥∥∥∥
Cτ (L2h)

≤M(
δ, θp

)
[∥∥∥ϕh

∥∥∥
W2

2h

+min
{
ln

1
τ
, 1 +

∣∣∣∣ln
∥∥∥Ah

x

∥∥∥
L2h →L2h

∣∣∣∣
}∥∥∥∥
{
fhk

}N
1

∥∥∥∥
Cτ (L2h)

]
.

(2.19)

Since

∣∣∣∣ln
∥∥∥Ah

x

∥∥∥
L2h →L2h

∣∣∣∣ ≤M ln
1
|h| , (2.20)
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we have that

min
{
ln

1
τ
, 1 +

∣∣∣∣ln
∥∥∥Ah

x

∥∥∥
L2h →L2h

∣∣∣∣
}

≤M1 ln
1

τ + |h| . (2.21)

From that, inequality (2.19), and the following theorem on the coercivity inequality for the
solution of the elliptic difference problem in L2h it follows inequality (2.18). Theorem 2.2 is
proved.

Theorem 2.3 (see [25, 26]). For the solution of the elliptic difference problem:

Ax
hu

h(x) = ωh(x), x ∈ Ω̃h,

uh(x) = 0, x ∈ Sh,
(2.22)

the following coercivity inequality holds:

n∑

r=1

∥∥∥∥
(
uhk

)

xrxr ,jr

∥∥∥∥
L2h

≤M
∥∥∥ωh

∥∥∥
L2h
, (2.23)

whereM does not depend on h and ωh.

Theorem 2.4. Let τ and |h| be sufficiently small positive numbers. Then, the solutions of difference
problem (2.5) and (2.6) satisfy the following coercivity stability estimate:

∥∥∥∥
{
τ−1
(
uhk − uhk−1

)}N
1

∥∥∥∥
Cα1 (L2h)

≤M(
δ, θp, α

)
[∥∥∥ϕh

∥∥∥
W2

2h

+
∥∥∥∥
{
fhk

}N
1

∥∥∥∥
Cα1 (L2h)

]
, (2.24)

whereM(δ, θp, α) is independent of τ , h, fhk (x), and ϕ
h(x), k = 1, . . . ,N.

Theorem 2.5. Let Ax
hϕ

h(x) = fhN(x) − ∑p

k=1 αmf
h
�m
(x). Then, for solutions of problem (2.5) and

(2.6), the following coercive stability estimate holds:

∥∥∥∥
{
τ−1
(
uhk − uhk−1

)}N
1

∥∥∥∥
Cα(L2h)

+
∥∥∥∥
{
uhk

}N
1

∥∥∥∥
Cα(W2

2h)
≤M(

δ, θp, α
)∥∥∥∥
{
fhk

}N
1

∥∥∥∥
Cα(L2h)

, (2.25)

whereM(δ, θp, α) does not depend on τ, h, fh
k
(x), and ϕh(x), k = 1, . . . ,N.
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The proofs of Theorems 2.4–2.5 are based on the formulas:

Ax
hu

h
k−1 = R

N−k+1Ax
hu

h
N −

N∑

j=k+1

τAx
hR

j−k+1
(
fhj − fhk

)
+
(
RN−k+1 − I

)
fhk ,

Ax
hB

x
hu

h
k−1 = D

N−k+1Ax
hB

x
hu

h
N

−
N∑

j=k+1

τAx
h

(
I +

τAx
h

2

)
Dj−k+1

(
fhj − fhk

)
+
(
DN−k+1 − I

)
fhk ,

(2.26)

the self-adjoint positive definiteness of the operatorAx
h
in L2h, estimates (2.16) and (2.17), the

triangle inequality, and assumption (1.6).

3. Numerical Results

For the numerical result, we consider the nonlocal boundary value problem:

∂u(t, x)
∂t

+ (2 + cos(x))
∂2u(t, x)
∂x2

− sin(x)
∂u(t, x)
∂x

= f(t, x), 0 < x < π, 0 < t < 1,

f(t, x) =
(
2t − 6t2 + 4t3

)
sin(x)

− t2(1 − t)2(2 + cos(x)) sin(x) − t2(1 − t)2 cos(x) sin(x),

u(0, x) = u(1, x), 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1,
(3.1)

for the reverse parabolic equation. It is easy to see that u(t, x) = t2(1 − t)2 sin(x) is the exact
solution of (3.1).

For the approximate solution of nonlocal boundary value problem (3.1), consider the
set [0, 1]τ × [0, π]h of a family of grid points depending on the small parameters τ and h

[0, 1]τ × [0, π]h

= {(t, xn) : tk = kτ, k = 1, . . . , N − 1,Nτ = 1, xn = nh, n = 1, . . . ,M − 1,Mh = π}.
(3.2)
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Applying (2.5), we get the first order of accuracy in t and the second order of accuracy
in x

ukn − uk−1n

τ
+ (2 + cos(xn))

uk−1n+1 − 2uk−1n + uk−1n−1
h2

− sin(xn)
uk−1n+1 − uk−1n−1

2h
= f(tk, xn), k = 1, . . . ,N, n = 1, . . . ,M − 1,

uk0 = ukM = 0, k = 0, . . . ,N,

u0n = uNn , n = 0, . . . ,M,

(3.3)

for the approximate solutions of the nonlocal boundary value problem (3.1).
Note that for difference scheme (3.3), we have that

{
−(2 + cos(xn))

uk−1n+1 − 2uk−1n + uk−1n−1
h2

− sin(xn)
uk−1n+1 − uk−1n−1

2h

}M−1

1

= Cx
hu

h
k−1(x) + B

x
hu

h
k−1(x),

(3.4)

where

Cx
hu

h(x) =
{
− (2 + cos(xn+1))((un+1 − un)/h) − (2 + cos(xn))((un − un−1)/h)

h

}M−1

1
,

Bxhu
h(x) =

{
cos(xn+1) − cos(xn)

h

un − un−1
h

− sin(xn)
un+1 − un

2h

}M−1

1
.

(3.5)

It is easy to see that Cx
h = (Cx

h)
∗ and Cx

h ≥ δIh, and

∥∥∥
(
Cx
h

)−1
Bxh

∥∥∥
L2h →L2h

≤M, (3.6)

where Ih is the identity operator.
So, Theorems 2.1, 2.2, 2.4, and 2.5 are compatible for the solution of (3.3).
We can write (3.3) as in the matrix form

Anun+1 + Bnun + Cnun−1 = Iϕn, n = 1, . . . ,M − 1,

u0 = �0, uM = �0.
(3.7)
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Here, ϕn is an (N + 1) × 1 column matrix, An, Bn, Cn are (N + 1) × (N + 1) square matrices,
An = anR, Cn = cnR,

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0 0 0
1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

... · · · ...
...

...
...

0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0 0 −1
bn d 0 0 · · · 0 0 0 0
0 bn d 0 · · · 0 0 0 0
0 0 bn d · · · 0 0 0 0
...

...
...

... · · · ...
...

...
...

0 0 0 0 · · · d 0 0 0
0 0 0 0 · · · bn d 0 0
0 0 0 0 · · · 0 bn d 0
0 0 0 0 · · · 0 0 bn d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

an =
2 + cos(xn)

h2
− sin(xn)

2h
, bn = − 1

τ
− 2(2 + cos(xn))

h2
,

cn =
2 + cos(xn)

h2
+
sin(xn)

2h
, d =

1
τ
.

ϕn =

⎡
⎢⎣

ϕ0
n
...
ϕNn

⎤
⎥⎦,

ϕ0
n = 0, n = 1, . . . ,M − 1,

ϕkn = f(tk, xn), n = 1, . . . ,N, n = 1, . . . ,M − 1,

(3.8)

here and in the future I is the (N + 1) × (N + 1) identity matrix,

us =

⎡
⎢⎣

u0s
...
uNs

⎤
⎥⎦

(N+1)×1

, s = n − 1, n, n + 1. (3.9)

Samarskii and Nikolaev studied this type of system in [27] for difference equations.
We seek the solution of (3.7) by the formula

un = αn+1un+1 + βn+1, n =M − 1, . . . , 1, (3.10)
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where uM = �0, αn (n = 1, . . . ,M − 1) are (N + 1) × (N + 1) square matrices and βn (n =
1, . . . ,M − 1) are (N + 1)× 1 column matrices. For the solution of difference equation (3.7)we
need to use the following formulas for αn, βn:

αn = −(Bn + Cnαn−1)−1An,

βn = (Bn + Cnαn−1)−1
(
Iϕn − Cnβn−1

)
, n = 2, . . . ,M − 1,

(3.11)

where α1 is the (N + 1) × (N + 1) zero matrix and β1 is the (N + 1) × 1 zero column vector.
Second, we consider again the nonlocal boundary value problem (3.1). Applying (2.6)

and formulas:

u(xn+1) − u(xn−1)
2h

− u′(xn) = O
(
h2
)
,

u(xn+1) − 2u(xn) + u(xn−1)
h2

− u′′(xn) = O
(
h2
)
,

u(xn+2) − 4u(xn+1) + 6u(xn) − 4u(xn−1) + u(xn−2)
h4

− u(4)(xn) = O
(
h2
)
,

2u(0) − 5u(h) + 4u(2h) − u(3h)
h2

− u′′(0) = O
(
h2
)
,

2u(1) − 5u(1 − h) + 4u(1 − 2h) − u(1 − 3h)
h2

− u′′(1) = O
(
h2
)
,

(3.12)

we get the second order of accuracy in t and x

ukn − uk−1n

τ
− (sin(xn) + τ sin(xn) + τ sin(xn) cos(xn))

uk−1n+1 − uk−1n−1
2h

+
(
(2 + cos(xn)) +

τ

2

(
6 cos(xn) + 5cos2(xn) − 2

))uk−1n+1 − 2uk−1n + uk−1n−1
h2

+ τ(4 sin(xn) + 2 sin(xn) cos(xn))
uk−1n+2 − 2uk−1n+1 + 2uk−1n−1 − uk−1n−2

2h3

−τ
2
(2 + cos(xn))2

(
uk−1n+2 − 4uk−1n+1 + 6uk−1n − 4uk−1n−1 + u

k−1
n−2
)

h4
= ϕkn,

ϕkn = f
(
tk − τ

2
, xn
)
− τ

2

(
1
h2

(2 + cos(xn))

×
(
f
(
tk − τ

2
, xn+1

)
− 2f

(
tk − τ

2
, xn
)
+ f
(
tk − τ

2
, xn−1

))

− 1
2h

sin(xn)
(
f
(
tk − τ

2
, xn+1

)
− f
(
tk − τ

2
, xn−1

)))
,
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k = 1, . . . ,N, n = 2, . . . ,M − 2,

uk0 = ukM = 0, uk1 =
4
5
uk2 −

1
5
uk3 , k = 0, . . . ,N,

ukM−1 =
4
5
ukM−2 −

1
5
ukM−3, k = 0, . . . ,N,

u0n − uNn = 0, n = 0, . . . ,M,

(3.13)

for the approximate solutions of the nonlocal boundary value problem (3.1).
We can rewrite this system in the following matrix form:

Anun+2 + Bnun+1 + Cnun +Dnun−1 + Enun−2 = Iϕn, n = 2, . . . ,M − 2,

u0 = �0, uM = �0, u1 =
4
5
u2 − 1

5
u3, uM−1 =

4
5
uM−2 − 1

5
uM−3,

(3.14)

where ϕn is an (N + 1) × 1 column matrix, An, Bn, Cn, Dn, En are (N + 1) × (N + 1) square
matrices

ϕn =

⎡
⎢⎣

ϕ0
n
...
ϕN
n

⎤
⎥⎦, (3.15)

An = vnR, Bn = ynR,Dn = znR, En = wnR,

Cn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 −1
rn p 0 · · · 0 0
0 rn p · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · p 0
0 0 0 · · · rn p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.16)

where p = 1/τ ,

vn =
τ

2h3
(4 sin(xn) + 2 sin(xn) cos(xn)) − τ

2h4
(2 + cos(xn))2,

yn = − 1
2h

(sin(xn) + τ sin(xn) + τ sin(xn) cos(xn))

+
1
h2

(
(2 + cos(xn)) +

τ

2

(
6 cos(xn) + 5 cos2(xn) − 2

))

− τ

h3
(4 sin(xn) + 2 sin(xn) cos(xn)) +

2τ
h4

(2 + cos(xn))2,
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rn = − 1
τ
− 2
h2

(
(2 + cos(xn)) +

τ

2

(
6 cos(xn) + 5cos2(xn) − 2

))

− 3τ
h4

(2 + cos(xn))2,

zn =
1
2h

(sin(xn) + τ sin(xn) + τ sin(xn) cos(xn))

+
1
h2

(
(2 + cos(xn)) +

τ

2

(
6 cos(xn) + 5cos2(xn) − 2

))

+
τ

h3
(4 sin(xn) + 2 sin(xn) cos(xn)) +

2τ
h4

(2 + cos(xn))2,

wn = − τ

2h4
(2 + cos(xn))2 − τ

2h3
(4 sin(xn) + 2 sin(xn) cos(xn)).

(3.17)

For the solution of the last matrix equation, we use the modified variant of Gauss
elimination method. We seek a solution of the matrix equation of the matrix equation in the
following form:

un = αn+1un+1 + βn+1un+2 + γn+1, n =M − 2, . . . , 0,

uM = �0, DM =
(
βM−2 + 5I

) − (4I − αM−2)αM−1,

uM−1 = D−1
M

[
(4I − αM−2)γM−1 − γM−2

]
,

(3.18)

where γ1 = γ2 = �0, α1 = β1 are (N + 1) × (N + 1) zero matrices, α2 = −4β2 = (4/5)I, and

βn+1 = −F−1
n An,

αn+1 = −F−1
n

(
Bn +Dnβn + Enαn−1βn

)
,

γn+1 = −F−1
n

(
Iϕn −Dnγn − Enαn−1γn − Enγn−1

)
,

Fn =
(
Cn +Dnαn + Enβn−1 + Enαn−1αn

)
, n = 2, . . . ,M − 2.

(3.19)

Now, let us give the results of the numerical analysis. In order to get the solution,
we used MATLAB programs. The numerical solutions are recorded for different values of
N = M and ukn represents the numerical solutions of these difference schemes at (tk, xn). For
their comparison, the errors are computed by

ENM = max
−N≤k≤N,1≤n≤M−1

∣∣∣u(tk, xn) − ukn
∣∣∣. (3.20)

Table 1 gives the error analysis between the exact solution and solutions derived by difference
schemes. Table 1 is constructed for N = M = 20, 40, and 60, respectively. Hence, the second
order of accuracy difference scheme is more accurate compared with the first order of accu-
racy difference scheme.
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Table 1: Error analysis.

Difference schemes N =M = 20 N =M = 40 N =M = 60
Difference scheme (3.3) 5.693 × 10−3 2.865 × 10−3 1.914 × 10−3

Difference scheme (3.13) 2.390 × 10−4 6.408 × 10−5 2.901 × 10−5

Table 1 is the error analysis between the exact solution and solutions derived by difference schemes.
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